Finding D-optimal designs by randomised decomposition and switching

The Hadamard maximal determinant (maxdet) problem is to find the maximum determinant D(n) of a square {+1, -1} matrix of given order n. Such a matrix with maximum determinant is called a saturated D-optimal design. We consider some cases where n > 2 is not divisible by 4, so the Hadamard bound is not attainable, but bounds due to Barba or Ehlich and Wojtas may be attainable. If R is a matrix with maximal (or conjectured maximal) determinant, then G = RR^T is the corresponding Gram matrix. For the cases that we consider, maximal or conjectured maximal Gram matrices are known. We show how to generate many Hadamard equivalence classes of solutions from a given Gram matrix G, using a randomised decomposition algorithm and row/column switching. In particular, we consider orders 26, 27 and 33, and obtain new saturated D-optimal designs (for order 26) and new conjectured saturated D-optimal designs (for orders 27 and 33).

[1]  W. Orrick On the enumeration of some D-optimal designs , 2005, math/0511141.

[2]  Andries E. Brouwer,et al.  An infinite series of symmetric designs , 1983 .

[3]  Richard P. Brent,et al.  Maximal determinants and saturated D-optimal designs of orders 19 and 37 , 2011 .

[4]  M. Behbahani On orthogonal matrices , 2004 .

[5]  H. Ehlich,et al.  Determinantenabschätzung für binäre Matrizen mitn≡3 mod 4 , 1964 .

[6]  Richard P. Brent,et al.  General Lower Bounds on Maximal Determinants of Binary Matrices , 2012, Electron. J. Comb..

[7]  Christos Koukouvinos,et al.  The Non-equivalent Circulant D-Optimal Designs for n=2 mod 4, n<=54, n=66 , 1994, J. Comb. Theory, Ser. A.

[8]  Noboru Ito,et al.  Classification of 3-(24, 12, 5) Designs and 24-Dimensional Hadamard Matrices , 1981, J. Comb. Theory, Ser. A.

[9]  Jennifer Seberry,et al.  Supplementary difference sets and optimal designs , 1991, Discret. Math..

[10]  Hiroshi Kimura,et al.  New Hadamard matrix of order 24 , 1989, Graphs Comb..

[11]  Ian M. Wanless Cycle Switches in Latin Squares , 2004, Graphs Comb..

[12]  C. H. Yang On Designs of Maximal (+1, -1)-Matrices of Order n ≡2 (mod 4). II , 1968 .

[13]  H. Ehlich,et al.  Determinantenabschätzungen für binäre Matrizen , 1964 .

[14]  William P. Orrick Switching Operations for Hadamard Matrices , 2008, SIAM J. Discret. Math..

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  M. Wojtas,et al.  On Hadamard's inequality for the determinants of order non-divisible by 4 , 1964 .

[17]  Brendan D. McKay,et al.  Hadamard equivalence via graph isomorphism , 1979, Discret. Math..

[18]  Edward Spence Skew-Hadamard matrices of the Goethals-Seidel type , 1975 .

[19]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .