The Use of Non-Conventional Water Resources as a Means of Adaptation to Drought and Climate Change in Semi-Arid Regions: South-Eastern Spain

Drought is a climatic risk with notable repercussions on water supply systems. The aim of this study is to analyze the principal measures for management and planning implemented during recent decades in south-eastern Spain (Segura River Basin) to respond to drought situations, focusing on the role played by non-conventional water resources (desalination and treated water). The results demonstrate that the study area (despite being one of the driest places of Spain) is less vulnerable to drought than regions with an Atlantic climate and greater availability of water. This has been possible thanks to the integration of non-conventional water resources as a means of adaptation to confront this natural risk, which is estimated to become more intense and frequent in the future owing to climate change.

[1]  C. S. Holling Resilience and Stability of Ecological Systems , 1973 .

[2]  L. Ohisson,et al.  Water conflicts and social resource scarcity , 2000 .

[3]  L. D. M. Ituarte,et al.  Constraints to Drought Contingency Planning in Spain: The Hydraulic Paradigm and the Case of Seville , 2000 .

[4]  J. Cantos Causas de las sequías en España. Aspectos climáticos y geográficos de un fenómeno natural , 2001 .

[5]  John Yen,et al.  Introduction , 2004, CACM.

[6]  Alon Tal,et al.  Seeking Sustainability: Israel's Evolving Water Management Strategy , 2006, Science.

[7]  M. Flörke,et al.  Future long-term changes in global water resources driven by socio-economic and climatic changes , 2007 .

[9]  J. Cantos,et al.  Recursos de agua no convencionales en España: estado de la cuestión, 2010 , 2010 .

[10]  P. Binning,et al.  Increasing urban water self-sufficiency: new era, new challenges. , 2011, Journal of environmental management.

[11]  E. Feitelson,et al.  Desalination, space and power: The ramifications of Israel's changing water geography , 2012 .

[12]  David Saurí,et al.  The end of scarcity? Water desalination as the new cornucopia for Mediterranean Spain , 2014 .

[13]  Jamie McEvoy Desalination and Water Security: The Promise and Perils of a Technological Fix to the Water Crisis in Baja California Sur, Mexico , 2014 .

[14]  Scott Samuelsen,et al.  Evaluating options for balancing the water-electricity nexus in California: part 1--securing water availability. , 2014, The Science of the total environment.

[15]  Percepción de recursos convencionales y no convencionales en áreas sujetas a estrés hídrico: el caso de Alicante , 2015 .

[16]  K. Stahl,et al.  Impacts of European drought events: insights from an international database of text-based reports , 2015 .

[17]  P. Gober,et al.  Outdoor Water Use as an Adaptation Problem: Insights from North American Cities , 2016, Water Resources Management.

[18]  Sorada Tapsuwan,et al.  Drivers of an urban community's acceptance of a large desalination scheme for drinking water , 2015 .

[19]  Leandro del Moral,et al.  Developing markets for water reallocation: Revisiting the experience of Spanish water mercantilización , 2015 .

[20]  Enrique Moltó Mantero,et al.  Las aguas pluviales y de tormenta: del abandono de un recurso híbrido con finalidad agrícola a su implantación como recurso no convencional en ámbitos urbanos , 2016 .

[21]  Rodney Anthony Stewart,et al.  The potential role of desalination in managing flood risks from dam overflows: the case of Sydney, Australia , 2016 .

[22]  Erik Swyngedouw,et al.  From Spain’s hydro-deadlock to the desalination fix , 2016 .

[23]  M. Fragkou,et al.  Trust matters: Why augmenting water supplies via desalination may not overcome perceptual water scarcity , 2016 .

[24]  Pilar Paneque,et al.  Methodology for the analysis of causes of drought vulnerability on the River Basin scale , 2017, Natural Hazards.

[25]  A. Tenza-Abril,et al.  Observed precipitation trend changes in the western Mediterranean region , 2017 .

[26]  D. Zetland Desalination and the commons: tragedy or triumph? , 2017 .

[27]  K. Stahl,et al.  Comparison of different threshold level methods for drought propagation analysis in Germany , 2017 .

[28]  Álvaro Francisco Morote Seguido,et al.  El uso de aguas pluviales en la ciudad de Alicante. De viejas ideas a nuevos enfoques , 2017 .

[29]  Álvaro-Francisco Morote,et al.  Critical review of desalination in Spain: a resource for the future? , 2017 .

[30]  La producció d’aigua dessalinitzada a les regions de Múrcia i València: Balanç d’un recurs alternatiu amb llums i ombres , 2017 .

[31]  Álvaro-Francisco Morote,et al.  Challenges and Proposals for Socio-Ecological Sustainability of the Tagus–Segura Aqueduct (Spain) under Climate Change , 2017 .

[32]  Richard Taylor,et al.  The measurement of water scarcity: Defining a meaningful indicator , 2017, Ambio.

[33]  Hiroshi Ishidaira,et al.  Evaluation of Water Security in Kathmandu Valley before and after Water Transfer from another Basin , 2018 .

[34]  N. Chitsaz,et al.  Introduction of new datasets of drought indices based on multivariate methods in semi-arid regions , 2018 .

[35]  L. Venkatachalam,et al.  Water transfer from irrigation tanks for urban use: can payment for ecosystem services produce efficient outcomes? , 2018, Politics and Policies for Water Resources Management in India.

[36]  J. Gironás,et al.  Droughts , 2020, World Water Resources.