Ionized calcium in the atmospheres of two ultra-hot exoplanets WASP-33b and KELT-9b

Ultra-hot Jupiters are emerging as a new class of exoplanets. Studying their chemical compositions and temperature structures will improve our understanding of their mass loss rate as well as their formation and evolution. We present the detection of ionized calcium in the two hottest giant exoplanets – KELT-9b and WASP-33b. By using transit datasets from CARMENES and HARPS-N observations, we achieved high-confidence-level detections of Ca II using the cross-correlation method. We further obtain the transmission spectra around the individual lines of the Ca II H&K doublet and the near-infrared triplet, and measure their line profiles. The Ca II H&K lines have an average line depth of 2.02 ± 0.17% (effective radius of 1.56 Rp) for WASP-33b and an average line depth of 0.78 ± 0.04% (effective radius of 1.47 Rp) for KELT-9b, which indicates that the absorptions are from very high upper-atmosphere layers close to the planetary Roche lobes. The observed Ca II lines are significantly deeper than the predicted values from the hydrostatic models. Such a discrepancy is probably a result of hydrodynamic outflow that transports a significant amount of Ca II into the upper atmosphere. The prominent Ca II detection with the lack of significant Ca I detection implies that calcium is mostly ionized in the upper atmospheres of the two planets.

[1]  M. Mallonn,et al.  The potassium absorption on HD189733b and HD209458b , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[2]  A. Bonomo,et al.  The GAPS Programme with HARPS-N at TNG , 2019, Astronomy & Astrophysics.

[3]  M. Osorio,et al.  Atmospheric characterization of the ultra-hot Jupiter MASCARA-2b/KELT-20b , 2019, Astronomy & Astrophysics.

[4]  D. Ehrenreich,et al.  A spectral survey of an ultra-hot Jupiter , 2019, Astronomy & Astrophysics.

[5]  T. Henning,et al.  petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval. , 2019, 1904.11504.

[6]  C. Helling,et al.  Sparkling nights and very hot days on WASP-18b: the formation of clouds and the emergence of an ionosphere , 2019, Astronomy & Astrophysics.

[7]  F. J. Alonso-Floriano,et al.  Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b , 2018, Science.

[8]  F. J. Alonso-Floriano,et al.  Detection of He I λ10830 Å absorption on HD 189733 b with CARMENES high-resolution transmission spectroscopy , 2018, Astronomy & Astrophysics.

[9]  F. J. Alonso-Floriano,et al.  Multiple water band detections in the CARMENES near-infrared transmission spectrum of HD 189733 b , 2018, Astronomy & Astrophysics.

[10]  J. Lothringer,et al.  Extreme-ultraviolet Radiation from A-stars: Implications for Ultra-hot Jupiters , 2018, The Astrophysical Journal.

[11]  M. Mallonn,et al.  An optical transmission spectrum of the ultra-hot Jupiter WASP-33 b , 2018, Astronomy & Astrophysics.

[12]  S. Redfield,et al.  Atmospheric Dynamics and the Variable Transit of KELT-9 b , 2018, The Astronomical Journal.

[13]  C. Denker,et al.  The Effects of Stellar Activity on Optical High-resolution Exoplanet Transmission Spectra , 2018, The Astronomical Journal.

[14]  W. Cochran,et al.  Hydrogen and Sodium Absorption in the Optical Transmission Spectrum of WASP-12b , 2018, The Astronomical Journal.

[15]  D. Ehrenreich,et al.  Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b , 2018, Nature.

[16]  D. Bayliss,et al.  The atmosphere of WASP-17b: Optical high-resolution transmission spectroscopy , 2018, Astronomy & Astrophysics.

[17]  T. Henning,et al.  An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b , 2018, Nature Astronomy.

[18]  R. Rebolo,et al.  Na I and Hα absorption features in the atmosphere of MASCARA-2b/KELT-20b , 2018, Astronomy & Astrophysics.

[19]  Tommi Koskinen,et al.  Extremely Irradiated Hot Jupiters: Non-oxide Inversions, H− Opacity, and Thermal Dissociation of Molecules , 2018, The Astrophysical Journal.

[20]  Jacob L. Bean,et al.  Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b from HST and Spitzer Phase Curve Observations , 2018, The Astronomical Journal.

[21]  M. Deleuil,et al.  From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context , 2018, Astronomy & Astrophysics.

[22]  N. Cowan,et al.  Increased Heat Transport in Ultra-hot Jupiter Atmospheres through H2 Dissociation and Recombination , 2018, 1802.07725.

[23]  Jacob L. Bean,et al.  H− Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b , 2018, 1801.02489.

[24]  Takayuki Kotani,et al.  High-resolution Spectroscopic Detection of TiO and a Stratosphere in the Day-side of WASP-33b , 2017, 1710.05276.

[25]  Andrew Gould,et al.  A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host , 2017, Nature.

[26]  T. Henning,et al.  Effect of the stellar absorption line centre-to-limb variation on exoplanet transmission spectrum observations , 2017, 1703.07585.

[27]  R. J. de Kok,et al.  Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b , 2017, 1701.07257.

[28]  Pierre-Olivier Lagage,et al.  Observing transiting planets with JWST. Prime targets and their synthetic spectral observations , 2016, 1611.08608.

[29]  G. Anglada-Escudé,et al.  The origin of the excess transit absorption in the HD 189733 system: planet or star? , 2016, 1607.03684.

[30]  M. Fridlund,et al.  Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e , 2016, 1606.08447.

[31]  R. J. de Kok,et al.  ROTATION AND WINDS OF EXOPLANET HD 189733 b MEASURED WITH HIGH-DISPERSION TRANSMISSION SPECTROSCOPY , 2015, 1512.05175.

[32]  T. Henning,et al.  MODEL ATMOSPHERES OF IRRADIATED EXOPLANETS: THE INFLUENCE OF STELLAR PARAMETERS, METALLICITY, AND THE C/O RATIO , 2015, 1509.07523.

[33]  S. Czesla,et al.  The center-to-limb variation across the Fraunhofer lines of HD 189733; Sampling the stellar spectrum using a transiting planet , 2015, 1509.05657.

[34]  Marshall C. Johnson,et al.  MEASUREMENT OF THE NODAL PRECESSION OF WASP-33 b VIA DOPPLER TOMOGRAPHY , 2015, 1508.02398.

[35]  Xavier Bonfils,et al.  A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b , 2015, Nature.

[36]  H. Lehmann,et al.  Mass of WASP-33b , 2015 .

[37]  D. Deming,et al.  SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b , 2015, 1505.01490.

[38]  D. Ehrenreich,et al.  Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph , 2015, 1503.05581.

[39]  E. Pall'e,et al.  The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra - Implications for exoplanet transit observations , 2015, 1501.02306.

[40]  R. A. E. Fosbury,et al.  High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse , 2014, International Journal of Astrobiology.

[41]  M. Mallonn,et al.  Pulsation Analysis And Its Impact On Primary Transit Modeling In WASP-33 , 2013, 1311.3614.

[42]  P. Rojo,et al.  Ground-based detection of calcium and possibly scandium and hydrogen in the atmosphere of HD 209458b , 2013, 1306.5475.

[43]  H. Lammer,et al.  THREE-DIMENSIONAL GAS DYNAMIC SIMULATION OF THE INTERACTION BETWEEN THE EXOPLANET WASP-12b AND ITS HOST STAR , 2012, 1212.2779.

[44]  G. Kov'acs,et al.  Comprehensive time series analysis of the transiting extrasolar planet WASP-33b , 2012, 1205.5060.

[45]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[46]  I. Ribas,et al.  WASP-33: The first delta Scuti exoplanet host star , 2010, 1010.1173.

[47]  J. Schneider,et al.  Constraints on the exosphere of CoRoT-7b , 2010, 1009.5500.

[48]  William E. McClintock,et al.  Mercury’s Complex Exosphere: Results from MESSENGER’s Third Flyby , 2010, Science.

[49]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[50]  R. G. West,et al.  METALS IN THE EXOSPHERE OF THE HIGHLY IRRADIATED PLANET WASP-12b , 2010, 1005.3656.

[51]  R. G. West,et al.  Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star , 2010, 1004.4551.

[52]  D. Ehrenreich Evaporation of extrasolar planets , 2008, 0807.1885.

[53]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[54]  D. B. McLaughlin Some results of a spectrographic study of the Algol system. , 1924 .

[55]  R. A. Rossiter On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system. , 1924 .

[56]  H. Rauer,et al.  Comet-like tail-formation of exospheres of hot rocky exoplanets: Possible implications for CoRoT-7b , 2011 .