Global Stabilization of a Korteweg-De Vries Equation With Saturating Distributed Control

This article deals with the design of saturated controls in the context of partial differential equations. It focuses on a Korteweg–de Vries equation, which is a nonlinear mathematical model of waves on shallow water surfaces. Two different types of saturated controls are considered. The well-posedness is proven applying a Banach fixed-point theorem, using some estimates of this equation and some properties of the saturation function. The proof of the asymptotic stability of the closed-loop system is separated in two cases: (i) when the control acts on all the domain, a Lyapunov function together with a sector condition describing the saturating input is used to conclude on the stability; (ii) when the control is localized, we argue by contradiction. Some numerical simulations illustrate the stability of the closed-loop nonlinear partial differential equation.

[1]  Yacine Chitour,et al.  Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[2]  Irena Lasiecka,et al.  Strong stability of elastic control systems with dissipative saturating feedback , 2003, Syst. Control. Lett..

[3]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[4]  H. Sussmann,et al.  On the stabilizability of multiple integrators by means of bounded feedback controls , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[5]  Ali Salem,et al.  Exact boundary controllability for Korteweg‐de Vries equation , 2009 .

[6]  Lionel Rosier,et al.  Control and stabilization of the Korteweg-de Vries equation: recent progresses , 2009, J. Syst. Sci. Complex..

[7]  Swann Marx,et al.  Output feedback control of the linear Korteweg-de Vries equation , 2014, 53rd IEEE Conference on Decision and Control.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  G. P. Menzala,et al.  On the uniform decay for the Korteweg–de Vries equation with weak damping , 2007 .

[10]  Lionel Rosier,et al.  Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain , 1997 .

[11]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[12]  Sophie Tarbouriech,et al.  Wave Equation With Cone-Bounded Control Laws , 2016, IEEE Transactions on Automatic Control.

[13]  T. Seidman,et al.  A note on stabilization with saturating feedback , 2001 .

[14]  Ademir F. Pazoto,et al.  Unique continuation and decay for the Korteweg-de Vries equation with localized damping , 2005 .

[15]  Sophie Tarbouriech,et al.  Stability and Stabilization of Linear Systems with Saturating Actuators , 2011 .

[16]  Hartmut Logemann,et al.  Time-Varying and Adaptive Integral Control of Infinite-Dimensional Regular Linear Systems with Input Nonlinearities , 2000, SIAM J. Control. Optim..

[17]  A. Boukricha Nonlinear Semigroups , 2004 .

[18]  Marshall Slemrod Feedback stabilization of a linear control system in Hilbert space with ana priori bounded control , 1989, Math. Control. Signals Syst..

[19]  W. Marsden I and J , 2012 .

[20]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[21]  Jean-Michel Coron,et al.  Exact boundary controllability of a nonlinear KdV equation with critical lengths , 2004 .

[22]  Jamal Daafouz,et al.  Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line , 2014, Syst. Control. Lett..

[23]  Eduardo Cerpa Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation , 2009 .

[24]  Marianne Chapouly,et al.  GLOBAL CONTROLLABILITY OF A NONLINEAR KORTEWEG–DE VRIES EQUATION , 2009 .

[25]  Felipe Linares,et al.  On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping , 2007 .

[26]  A. Teel Global stabilization and restricted tracking for multiple integrators with bounded controls , 1992 .

[27]  Eduardo Cerpa,et al.  RAPID EXPONENTIAL STABILIZATION FOR A LINEAR KORTEWEG-DE VRIES EQUATION , 2009 .

[28]  Sophie Tarbouriech,et al.  Stabilization of continuous-time linear systems subject to input quantization , 2015, Autom..

[29]  Enrique Zuazua,et al.  Stabilization of the Korteweg-De Vries equation with localized damping , 2002 .

[30]  Mauricio Sepúlveda,et al.  Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping , 2010, Numerische Mathematik.

[31]  Jean-Michel Coron,et al.  Local rapid stabilization for a Korteweg–de Vries equation with a Neumann boundary control on the right , 2013, 1311.4031.

[32]  Isabelle Queinnec,et al.  Stability Analysis and Stabilization of Systems With Input Backlash , 2014, IEEE Transactions on Automatic Control.

[33]  Eduardo Cerpa,et al.  Control of a Korteweg-de Vries equation: A tutorial , 2013 .

[34]  Fábio Natali,et al.  An example of non-decreasing solution for the KdV equation posed on a bounded interval , 2014 .

[35]  P. Olver Nonlinear Systems , 2013 .

[36]  J. Coron Control and Nonlinearity , 2007 .

[37]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[38]  Jean-Michel Coron,et al.  Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths , 2013, 1306.3637.

[39]  Miroslav Krstic,et al.  Stabilization of linearized Korteweg-de Vries systems with anti-diffusion , 2013, 2013 American Control Conference.

[40]  Jean-Claude Saut,et al.  Unique continuation for some evolution equations , 1987 .

[41]  Lionel Rosier,et al.  Global Stabilization of the Generalized Korteweg--de Vries Equation Posed on a Finite Domain , 2006, SIAM J. Control. Optim..

[42]  Jean-Michel Coron,et al.  Rapid Stabilization for a Korteweg-de Vries Equation From the Left Dirichlet Boundary Condition , 2013, IEEE Transactions on Automatic Control.

[43]  Matthew C. Turner,et al.  Antiwindup for stable linear systems with input saturation: an LMI-based synthesis , 2003, IEEE Trans. Autom. Control..

[44]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .