Space-Efficient Indexing of Chess Endgame Tables

Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 10^9 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.

[1]  H. Jaap van den Herik,et al.  The Construction of an Omniscient Endgame Data Base , 1985, J. Int. Comput. Games Assoc..

[2]  Jürg Nievergelt,et al.  Exhaustive and Heuristic Retrograde Analysis of the KPPKP Endgame , 1999, J. Int. Comput. Games Assoc..

[3]  Ernst A. Heinz,et al.  Scalable Search in Computer Chess , 2000, Computational Intelligence.

[4]  Lars Rasmussen,et al.  A Correction to Some KRKB-Database Results , 1989, J. Int. Comput. Games Assoc..

[5]  H. Jaap van den Herik,et al.  A Data Base on Data Bases , 1986, J. Int. Comput. Games Assoc..

[6]  Mathias Feist,et al.  Report on the 15th World Microcomputer Chess Championship , 1997, J. Int. Comput. Games Assoc..

[7]  L. Stiller Multilinear Algebra and Chess Endgames , 1996 .

[8]  Ken Thompson Chess Endgames Vol. 1 , 1991, J. Int. Comput. Games Assoc..

[9]  Ernst A. Heinz,et al.  Endgame Databases and Efficient Index Schemes for Chess , 1999, J. Int. Comput. Games Assoc..

[10]  Guy Haworth,et al.  KQQKQQ and the Kasparov-World Game , 1999, J. Int. Comput. Games Assoc..

[11]  Steven J. Edwards Comments on Barth'S Article Combining Knowledge and Search to Yield Infallible Endgame Programs , 1995, J. Int. Comput. Games Assoc..

[12]  H. J. van den Herik,et al.  Thompson: All about five men , 1992 .

[13]  Ken Thompson,et al.  Retrograde Analysis of Certain Endgames , 1986, J. Int. Comput. Games Assoc..

[14]  Lewis Stiller,et al.  Group graphs and computational symmetry on massively parallel architecture , 1990, Proceedings SUPERCOMPUTING '90.

[15]  Ken Thompson,et al.  6-Piece Endgames , 1996, J. Int. Comput. Games Assoc..

[16]  Lewis Stiller Exploiting Symmetry on Parallel Architectures , 1995, J. Int. Comput. Games Assoc..

[17]  Peter Karrer KQQKQP and KQPKQP≈ , 2000, J. Int. Comput. Games Assoc..

[18]  H. J. van den Herik,et al.  Thompson: Quintets with Variations , 1993, J. Int. Comput. Games Assoc..

[19]  Lewis Stiller,et al.  Parallel Analysis of Certain Endgames , 1989, J. Int. Comput. Games Assoc..

[20]  Wilhelm Barth Combining Knowledge and Search to Yield Infallible Endgame Programs , 1995, J. Int. Comput. Games Assoc..

[21]  Donald F. Beal The 9th World Computer-Chess Championship: The Search-Engine Features of the Programs , 1999, J. Int. Comput. Games Assoc..