Robust penalty-weighted deblurring via kernel adaption using single image

Abstract Image blind deconvolution is well known as a challenging, ill-posed problem due to the uncertainty of the blur kernel and the noise condition. Based on our observations, blind deconvolution algorithms tend to generate disconnected and noisy blur kernels, which would yield a serious ringing effect in the restored image if the input image is noisy. Therefore, there is still room for further improvement, especially for noisy images captured under poor illumination conditions. In this paper, we propose a robust blind deconvolution algorithm by adopting a penalty-weighted anisotropic diffusion prior. On one hand, the anisotropic diffusion prior effectively eliminates the discontinuity in the blur kernel caused by the noisy input image during the process of kernel estimation. On the other hand, the weighted penalizer reduces the speckle noise of the blur kernel, thus improving the quality of the restored image. The effectiveness of the proposed algorithm is verified by both synthetic and real images with defocused or motion blur.

[1]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[2]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[3]  Peyman Milanfar,et al.  Blind Deconvolution Using Alternating Maximum a Posteriori Estimation with Heavy-Tailed Priors , 2013, CAIP.

[4]  K. Egiazarian,et al.  Blind image deconvolution , 2007 .

[5]  Zongben Xu,et al.  Fast image deconvolution using closed-form thresholding formulas of regularization , 2013, J. Vis. Commun. Image Represent..

[6]  H. P. Lee,et al.  Blind restoration of images degraded by space-variant blurs using iterative algorithms for both blur identification and image restoration , 1997, Image Vis. Comput..

[7]  Hong-Kai Zhao Mathematics in image processing , 2013 .

[8]  Stephen Lin,et al.  Detail Recovery for Single-image Defocus Blur , 2009, IPSJ Trans. Comput. Vis. Appl..

[9]  Filip Šroubek,et al.  Image Fusion via Multichannel Blind Deconvolution , 2022 .

[10]  Yair Weiss,et al.  From learning models of natural image patches to whole image restoration , 2011, 2011 International Conference on Computer Vision.

[11]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[12]  Stanley J. Reeves,et al.  A cross-validation framework for solving image restoration problems , 1992, J. Vis. Commun. Image Represent..

[13]  Peyman Milanfar,et al.  Robust Multichannel Blind Deconvolution via Fast Alternating Minimization , 2012, IEEE Transactions on Image Processing.

[14]  Jan Flusser,et al.  Multichannel blind iterative image restoration , 2003, IEEE Trans. Image Process..

[15]  Anat Levin,et al.  Blind Motion Deblurring Using Image Statistics , 2006, NIPS.

[16]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  James Hays,et al.  Super-resolution from internet-scale scene matching , 2012, 2012 IEEE International Conference on Computational Photography (ICCP).

[18]  Yo-Sung Ho,et al.  High-quality non-blind image deconvolution with adaptive regularization , 2011, J. Vis. Commun. Image Represent..

[19]  Jitendra Malik,et al.  Sharpening Out of Focus Images using High‐Frequency Transfer , 2013, Comput. Graph. Forum.

[20]  Xu Zhou,et al.  Variational Dirichlet Blur Kernel Estimation , 2015, IEEE Transactions on Image Processing.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Adam Finkelstein,et al.  A no-reference metric for evaluating the quality of motion deblurring , 2013, ACM Trans. Graph..

[23]  M. Bertero,et al.  Efficient gradient projection methods for edge-preserving removal of Poisson noise , 2009 .

[24]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[25]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[26]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[27]  Weiguo Gong,et al.  Total variation blind deconvolution employing split Bregman iteration , 2012, J. Vis. Commun. Image Represent..

[28]  Qianqing Qin,et al.  Hybrid regularization image deblurring in the presence of impulsive noise , 2013, J. Vis. Commun. Image Represent..

[29]  Andreas Koschan,et al.  Reduced-order spectral data modeling based on local proper orthogonal decomposition. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[31]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[32]  Qionghai Dai,et al.  Robust blind motion deblurring using near-infrared flash image , 2013, J. Vis. Commun. Image Represent..

[33]  Bernhard Schölkopf,et al.  Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database , 2012, ECCV.

[34]  Hui Cheng,et al.  Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection , 2006, ECCV.

[35]  Tieyong Zeng,et al.  Lagrangian multipliers and split Bregman methods for minimization problems constrained on Sn-1 , 2012, J. Vis. Commun. Image Represent..

[36]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[38]  Stephen Lin,et al.  Motion-aware noise filtering for deblurring of noisy and blurry images , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[40]  Salvador Gabarda,et al.  An evolutionary blind image deconvolution algorithm through the pseudo-Wigner distribution , 2006, J. Vis. Commun. Image Represent..

[41]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Chang-Hwan Son,et al.  Image-pair-based deblurring with spatially varying norms and noisy image updating , 2013, J. Vis. Commun. Image Represent..

[43]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[44]  Sylvain Paris,et al.  Handling Noise in Single Image Deblurring Using Directional Filters , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[46]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[47]  Bahadir K. Gunturk,et al.  Image Restoration , 2012 .

[48]  J. Christou,et al.  Restoration of Astronomical Images by Iterative Blind Deconvolution , 1993 .

[49]  Junbin Gao,et al.  Blind image deblurring via coupled sparse representation , 2014, J. Vis. Commun. Image Represent..

[50]  Jia Chen,et al.  Robust dual motion deblurring , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.