MIT Open Access Articles Automatic Fact Checking Using Context and Discourse Information

We study the problem of automatic fact-checking, paying special attention to the impact of contextual and discourse information. We address two related tasks: ( i ) detecting check-worthy claims and ( ii ) fact-checking claims. We develop supervised systems based on neural networks, kernel-based support vector machines

[1]  Preslav Nakov,et al.  SemEval-2016 Task 3: Community Question Answering , 2019, *SEMEVAL.

[2]  Preslav Nakov,et al.  The dark side of news community forums: opinion manipulation trolls , 2018, Internet Res..

[3]  Preslav Nakov,et al.  Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. Task 2: Factuality , 2018, CLEF.

[4]  Preslav Nakov,et al.  Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. Task 1: Check-Worthiness , 2018, CLEF.

[5]  Preslav Nakov,et al.  Integrating Stance Detection and Fact Checking in a Unified Corpus , 2018, NAACL.

[6]  Preslav Nakov,et al.  ClaimRank: Detecting Check-Worthy Claims in Arabic and English , 2018, NAACL.

[7]  Preslav Nakov,et al.  Automatic Stance Detection Using End-to-End Memory Networks , 2018, NAACL.

[8]  Sinan Aral,et al.  The spread of true and false news online , 2018, Science.

[9]  Miriam J. Metzger,et al.  The science of fake news , 2018, Science.

[10]  Preslav Nakov,et al.  Fact Checking in Community Forums , 2018, AAAI.

[11]  Preslav Nakov,et al.  We Built a Fake News / Click Bait Filter: What Happened Next Will Blow Your Mind! , 2017, RANLP.

[12]  Saurabh Bagchi,et al.  TATHYA: A Multi-Classifier System for Detecting Check-Worthy Statements in Political Debates , 2017, CIKM.

[13]  Preslav Nakov,et al.  Fully Automated Fact Checking Using External Sources , 2017, RANLP.

[14]  Eunsol Choi,et al.  Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking , 2017, EMNLP.

[15]  Karin M. Verspoor,et al.  SemEval-2017 Task 3: Community Question Answering , 2017, *SEMEVAL.

[16]  Preslav Nakov,et al.  Seminar Users in the Arabic Twitter Sphere , 2017, SocInfo.

[17]  Arkaitz Zubiaga,et al.  SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours , 2017, *SEMEVAL.

[18]  Gerhard Weikum,et al.  Where the Truth Lies: Explaining the Credibility of Emerging Claims on the Web and Social Media , 2017, WWW.

[19]  Aishik Chakraborty,et al.  Detection of Sockpuppets in Social Media , 2017, CSCW Companion.

[20]  Gerhard Weikum,et al.  Credibility Assessment of Textual Claims on the Web , 2016, CIKM.

[21]  Preslav Nakov,et al.  In Search of Credible News , 2016, AIMSA.

[22]  Preslav Nakov,et al.  Hunting for Troll Comments in News Community Forums , 2016, ACL.

[23]  Ngoc Thang Vu,et al.  Towards a text analysis system for political debates , 2016, LaTeCH@ACL.

[24]  Wei Gao,et al.  Detecting Rumors from Microblogs with Recurrent Neural Networks , 2016, IJCAI.

[25]  Preslav Nakov,et al.  SemanticZ at SemEval-2016 Task 3: Ranking Relevant Answers in Community Question Answering Using Semantic Similarity Based on Fine-tuned Word Embeddings , 2016, *SEMEVAL.

[26]  Kalina Bontcheva,et al.  Overview of the Special Issue on Trust and Veracity of Information in Social Media , 2016, TOIS.

[27]  Laure Berti-Équille,et al.  VERA: A Platform for Veracity Estimation over Web Data , 2016, WWW.

[28]  Arkaitz Zubiaga,et al.  Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads , 2015, PloS one.

[29]  Chengkai Li,et al.  Detecting Check-worthy Factual Claims in Presidential Debates , 2015, CIKM.

[30]  Wei Gao,et al.  Detect Rumors Using Time Series of Social Context Information on Microblogging Websites , 2015, CIKM.

[31]  G. Weikum,et al.  Leveraging Joint Interactions for Credibility Analysis in News Communities , 2015, CIKM.

[32]  Preslav Nakov,et al.  Exposing Paid Opinion Manipulation Trolls , 2015, RANLP.

[33]  Shafiq R. Joty,et al.  CODRA: A Novel Discriminative Framework for Rhetorical Analysis , 2015, CL.

[34]  Preslav Nakov,et al.  Finding Opinion Manipulation Trolls in News Community Forums , 2015, CoNLL.

[35]  Preslav Nakov,et al.  SemEval-2015 Task 3: Answer Selection in Community Question Answering , 2015, *SEMEVAL.

[36]  Quoc V. Le,et al.  Exploiting Similarities among Languages for Machine Translation , 2013, ArXiv.

[37]  Daniel Jurafsky,et al.  Linguistic Models for Analyzing and Detecting Biased Language , 2013, ACL.

[38]  Saif Mohammad,et al.  CROWDSOURCING A WORD–EMOTION ASSOCIATION LEXICON , 2013, Comput. Intell..

[39]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[40]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[41]  Srinivasan Venkatesh,et al.  Battling the Internet water army: Detection of hidden paid posters , 2011, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[42]  Kevin Robert Canini,et al.  Finding Credible Information Sources in Social Networks Based on Content and Social Structure , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[43]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[44]  Barbara Poblete,et al.  Information credibility on twitter , 2011, WWW.

[45]  Chu-Ren Huang,et al.  Incorporate Credibility into Context for the Best Social Media Answers , 2010, PACLIC.

[46]  Matteo Negri,et al.  An Open-Source Package for Recognizing Textual Entailment , 2010, ACL.

[47]  Petr Sojka,et al.  Software Framework for Topic Modelling with Large Corpora , 2010 .

[48]  Barbara Rosario,et al.  What is disputed on the web? , 2010, WICOW '10.

[49]  John Mark Agosta,et al.  Highlighting disputed claims on the web , 2010, WWW '10.

[50]  Ido Dagan,et al.  Recognizing textual entailment: Rational, evaluation and approaches , 2009, Natural Language Engineering.

[51]  Hyoil Han,et al.  Answer Credibility: A Language Modeling Approach to Answer Validation , 2009, NAACL.

[52]  Roland Kuhn,et al.  Stabilizing Minimum Error Rate Training , 2009, WMT@EACL.

[53]  Gilad Mishne,et al.  Finding high-quality content in social media , 2008, WSDM '08.

[54]  Eugene Agichtein,et al.  Discovering authorities in question answer communities by using link analysis , 2007, CIKM '07.

[55]  W. Bruce Croft,et al.  A framework to predict the quality of answers with non-textual features , 2006, SIGIR.

[56]  Ken Hyland Metadiscourse: Exploring Interaction in Writing , 2005 .

[57]  Lucian Vlad Lita,et al.  Qualitative Dimensions in Question Answering: Extending the Definitional QA Task , 2005, AAAI.

[58]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[59]  Ellen Riloff,et al.  Learning Extraction Patterns for Subjective Expressions , 2003, EMNLP.

[60]  Ann M. Brill,et al.  Online Journalists Embrace New Marketing Function , 2001 .

[61]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[62]  Jonathan Baxter,et al.  A Bayesian/Information Theoretic Model of Learning to Learn via Multiple Task Sampling , 1997, Machine Learning.

[63]  Rich Caruana,et al.  Multitask Learning: A Knowledge-Based Source of Inductive Bias , 1993, ICML.

[64]  J. Hooper On Assertive Predicates , 1975 .

[65]  Preslav Nakov,et al.  Do Not Trust the Trolls: Predicting Credibility in Community Question Answering Forums , 2017, RANLP.

[66]  Preslav Nakov,et al.  A Context-Aware Approach for Detecting Worth-Checking Claims in Political Debates , 2017, RANLP.

[67]  Naeemul Hassan,et al.  Comparing Automated Factual Claim Detection Against Judgments of Journalism Organizations , 2016 .

[68]  Matthias Hagen,et al.  Overview of the 1st international competition on plagiarism detection , 2009 .

[69]  Gilles Louppe,et al.  Independent consultant , 2013 .

[70]  Noriko Kando,et al.  Overview of the NTCIR-8 Community QA Pilot Task (Part I): The Test Collection and the Task , 2010, NTCIR.

[71]  Steven Bird NLTK: The Natural Language Toolkit , 2006, ACL.

[72]  James A. Malcolm,et al.  Detecting Short Passages of Similar Text in Large Document Collections , 2001, EMNLP.

[73]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.