Crooked maps in F22
暂无分享,去创建一个
[1] Anne Canteaut,et al. On almost perfect nonlinear mappings over F/sup n//sub 2/ , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[2] Nils Gregor Leander. Normality of Bent Functions Monomial-and Binomial-Bent Functions , 2004 .
[3] Serge Vaudenay,et al. Links Between Differential and Linear Cryptanalysis , 1994, EUROCRYPT.
[4] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[5] Jürgen Bierbrauer,et al. Crooked binomials , 2008, Des. Codes Cryptogr..
[6] E. R. Van Dam,et al. Uniformly Packed Codes and More Distance Regular Graphs from Crooked Functions , 2000 .
[7] Robert Gold,et al. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.
[8] H. Hollmann,et al. A Proof of the Welch and Niho Conjectures on Cross-Correlations of Binary m-Sequences , 2001 .
[9] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[10] A. Canteaut,et al. Decomposing bent functions , 2002, Proceedings IEEE International Symposium on Information Theory,.
[11] Jacques Wolfmann,et al. Codes projectifs a deux ou trois poids associfs aux hyperquadriques d'une geometrie finie , 1975, Discret. Math..
[12] Claude Carlet,et al. Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..
[13] Yuliang Zheng,et al. Plateaued Functions , 1999, ICICS.
[14] Alexander Pott,et al. A characterization of a class of maximum nonlinear functions , 2005 .
[15] Kaisa Nyberg,et al. Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.
[16] Alexander Pott,et al. A new APN function which is not equivalent to a power mapping , 2005, IEEE Transactions on Information Theory.
[17] Philippe Langevin,et al. On the Non-linearity of Power Functions , 2005, Des. Codes Cryptogr..
[18] Hans Dobbertin,et al. Almost Perfect Nonlinear Power Functions on GF(2n): The Niho Case , 1999, Inf. Comput..
[19] Anne Canteaut,et al. Binary m-sequences with three-valued crosscorrelation: A proof of Welch's conjecture , 2000, IEEE Trans. Inf. Theory.
[20] Thierry P. Berger,et al. On Almost Perfect Nonlinear mappings , 2005 .
[21] Rudolf Lide,et al. Finite fields , 1983 .
[22] Andrew Klapper,et al. Cross-correlations of geometric sequences in characteristic two , 1993, Des. Codes Cryptogr..
[23] Gohar M. M. Kyureghyan. The only crooked power functions are x2k+2l , 2007, Eur. J. Comb..
[24] H. Dobbertin. Almost Perfect Nonlinear Power Functions on GF(2n): A New Case for n Divisible by 5 , 2001 .
[25] Dmitry Fon-Der-Flaass,et al. Codes, graphs, and schemes from nonlinear functions , 2003, Eur. J. Comb..
[26] Dmitry Fon-Der-Flaass,et al. Crooked Functions, Bent Functions, and Distance Regular Graphs , 1998, Electron. J. Comb..
[27] Hans Dobbertin,et al. Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.
[28] Tadao Kasami,et al. The Weight Enumerators for Several Clauses of Subcodes of the 2nd Order Binary Reed-Muller Codes , 1971, Inf. Control..