MOF Capacitates Cyclodextrin to Mega-Load Mode for High-Efficient Delivery of Valsartan

[1]  Vikramjeet Singh,et al.  Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan , 2018, Acta pharmaceutica Sinica. B.

[2]  Xu Xu,et al.  Molecular Mechanism of Loading Sulfur Hexafluoride in γ-Cyclodextrin Metal-Organic Framework. , 2018, The journal of physical chemistry. B.

[3]  P. York,et al.  Enhanced stability of vitamin A palmitate microencapsulated by γ-cyclodextrin metal-organic frameworks , 2018, Journal of microencapsulation.

[4]  S. Zhang,et al.  Effective Formaldehyde Capture by Green Cyclodextrin-Based Metal-Organic Framework. , 2018, ACS applied materials & interfaces.

[5]  Xue Li,et al.  Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles. , 2017, International journal of pharmaceutics.

[6]  Chuanbin Wu,et al.  Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding. , 2017, Chemical communications.

[7]  Jean Martínez,et al.  Synthesis and post-synthetic modification of UiO-67 type metal-organic frameworks by mechanochemistry , 2017 .

[8]  Xue Li,et al.  Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. , 2017, Nanoscale.

[9]  Vikramjeet Singh,et al.  Evaluation of drug loading capabilities of γ-cyclodextrin-metal organic frameworks by high performance liquid chromatography. , 2017, Journal of chromatography. A.

[10]  P. York,et al.  Microwave-Assisted Rapid Synthesis of γ-Cyclodextrin Metal–Organic Frameworks for Size Control and Efficient Drug Loading , 2017 .

[11]  Xue Li,et al.  Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks , 2016, Pharmaceutical Research.

[12]  W. Verboom,et al.  Cyclodextrin-based supramolecular nanoparticles for biomedical applications. , 2017, Journal of materials chemistry. B.

[13]  Mohamad G. Abiad,et al.  Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin. , 2016, Food chemistry.

[14]  J. Lewiński,et al.  Metal complexes based on native cyclodextrins: Synthesis and structural diversity , 2016 .

[15]  K. Higashi,et al.  Application of Solid-State NMR Relaxometry for Characterization and Formulation Optimization of Grinding-Induced Drug Nanoparticle. , 2016, Molecular pharmaceutics.

[16]  G. Cravotto,et al.  Enabling technologies and green processes in cyclodextrin chemistry , 2016, Beilstein journal of organic chemistry.

[17]  P. Breen,et al.  Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency. , 2016, Drug discovery today.

[18]  G. Guan,et al.  Crystal growth of cyclodextrin‐based metal‐organic framework with inclusion of ferulic acid , 2015 .

[19]  G. Crini,et al.  Review: a history of cyclodextrins. , 2014, Chemical reviews.

[20]  E. Coutinho,et al.  Valsartan inclusion by methyl-β-cyclodextrin: thermodynamics, molecular modelling, Tween 80 effect and evaluation. , 2014, Carbohydrate polymers.

[21]  A. Mendonza,et al.  Bioavailability of valsartan oral dosage forms , 2014, Clinical pharmacology in drug development.

[22]  P. R. Vuddanda,et al.  A Comparison between Use of Spray and Freeze Drying Techniques for Preparation of Solid Self-Microemulsifying Formulation of Valsartan and In Vitro and In Vivo Evaluation , 2013, BioMed research international.

[23]  Jian-rong Wang,et al.  Highly Crystalline Forms of Valsartan with Superior Physicochemical Stability , 2013 .

[24]  A. Cheetham,et al.  Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. , 2013, Chemistry.

[25]  J. F. Stoddart,et al.  Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. , 2013, Journal of the American Chemical Society.

[26]  M. Eckert-Maksić,et al.  Clean and Efficient Synthesis Using Mechanochemistry: Coordination Polymers, Metal-Organic Frameworks and Metallodrugs , 2012 .

[27]  A. Cheetham,et al.  Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. , 2012, Chemical communications.

[28]  Han‐Gon Choi,et al.  Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. , 2012, International journal of pharmaceutics.

[29]  Ronald A. Smaldone,et al.  Nanoporous carbohydrate metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[30]  Jeremiah J Gassensmith,et al.  Strong and reversible binding of carbon dioxide in a green metal-organic framework. , 2011, Journal of the American Chemical Society.

[31]  Ronald A. Smaldone,et al.  Metal-organic frameworks from edible natural products. , 2010, Angewandte Chemie.

[32]  S. Keller,et al.  Valsartan Protects Pancreatic Islets and Adipose Tissue From the Inflammatory and Metabolic Consequences of a High-Fat Diet in Mice , 2010, Hypertension.

[33]  Erem Bilensoy,et al.  Recent advances and future directions in amphiphilic cyclodextrin nanoparticles , 2009, Expert opinion on drug delivery.

[34]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.

[35]  A. Miro,et al.  Improvement of Solubility and Stability of Valsartan by Hydroxypropyl-\boldbeta-Cyclodextrin , 2006 .

[36]  J. F. Stoddart,et al.  Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption. , 2016, International journal of pharmaceutics.

[37]  A. Cheetham,et al.  Amorphous metal-organic frameworks. , 2014, Accounts of chemical research.