Worst-Case Bounds for Gaussian Process Models
暂无分享,去创建一个
[1] Dean Phillips Foster. Prediction in the Worst Case , 1991 .
[2] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[3] Jorma Rissanen,et al. The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.
[4] Dianne P. O'Leary,et al. The mathematics of information coding, extraction, and distribution , 1999 .
[5] D. Haussler,et al. Worst Case Prediction over Sequences under Log Loss , 1999 .
[6] Y. Shtarkov. AIM FUNCTIONS AND SEQUENTIAL ESTIMATION OF THE SOURCE MODEL FOR UNIVERSAL CODING , 1999 .
[7] Manfred K. Warmuth,et al. The Minimax Strategy for Gaussian Density Estimation. pp , 2000, COLT.
[8] Dean P. Foster,et al. The Competitive Complexity Ratio , 2000 .
[9] E. Takimoto,et al. The Minimax Strategy for Gaussian Density Estimation , 2000 .
[10] V. Vovk. Competitive On‐line Statistics , 2001 .
[11] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[12] Manfred K. Warmuth,et al. Relative Loss Bounds for On-Line Density Estimation with the Exponential Family of Distributions , 1999, Machine Learning.
[13] Sham M. Kakade,et al. Online Bounds for Bayesian Algorithms , 2004, NIPS.
[14] Nicolò Cesa-Bianchi,et al. Worst-Case Bounds for the Logarithmic Loss of Predictors , 1999, Machine Learning.
[15] Peter Grünwald,et al. A tutorial introduction to the minimum description length principle , 2004, ArXiv.