A variance-estimation-based stopping rule for symbolic dynamic filtering

[1]  Asok Ray,et al.  A stopping rule for symbolic dynamic filtering , 2010, Appl. Math. Lett..

[2]  A. Ray,et al.  Statistical Mechanics of Complex Systems for Pattern Identification , 2009 .

[3]  James M. Flegal,et al.  Batch means and spectral variance estimators in Markov chain Monte Carlo , 2008, 0811.1729.

[4]  James M. Flegal,et al.  Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.

[5]  Shalabh Gupta,et al.  Symbolic time series analysis of ultrasonic data for early detection of fatigue damage , 2007 .

[6]  Asok Ray,et al.  Symbolic time series analysis via wavelet-based partitioning , 2006, Signal Process..

[7]  Galin L. Jones,et al.  Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.

[8]  W. Gilks Markov Chain Monte Carlo , 2005 .

[9]  Asok Ray,et al.  Symbolic dynamic analysis of complex systems for anomaly detection , 2004, Signal Process..

[10]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .

[11]  M. Schervish P Values: What They are and What They are Not , 1996 .

[12]  Jeffrey S. Rosenthal,et al.  Convergence Rates for Markov Chains , 1995, SIAM Rev..

[13]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[14]  Richard L. Smith,et al.  Estimating the second largest eigenvalue of a Markov transition matrix , 2000 .

[15]  R. Bhattacharya,et al.  Stochastic processes with applications , 1990 .