Sticky microbes: forces in microbial cell adhesion.

Understanding the fundamental forces involved in the adhesion of microbial cells is important not only in microbiology, to elucidate cellular functions (such as ligand-binding or biofilm formation), but also in medicine (biofilm infections) and biotechnology (cell aggregation). Rapid progress in atomic force microscopy (AFM) techniques has made it possible to measure the forces driving cell-cell and cell-substrate interactions on a single cell basis. A living cell is attached to the AFM probe, thereby enabling researchers to measure the interaction forces between the cell and a target surface. Recent advances in our understanding of the forces driving cell adhesion and biofilm formation are discussed, with a focus on pathogens. These studies provide compelling evidence that, upon contact with a surface, cell adhesion components display a variety of mechanical responses that are important for cell adhesion.

[1]  T. Beveridge,et al.  Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions Between Shewanella and α-FeOOH , 2001, Science.

[2]  Y. Dufrêne Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface , 2014, mBio.

[3]  A. Beaussart,et al.  Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. , 2014, ACS chemical biology.

[4]  Vincent T. Moy,et al.  Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion , 2003, Journal of Cell Science.

[5]  Yves F Dufrêne,et al.  Chemical force microscopy of single live cells. , 2007, Nano letters.

[6]  Yves F Dufrêne,et al.  Force-induced formation and propagation of adhesion nanodomains in living fungal cells , 2010, Proceedings of the National Academy of Sciences.

[7]  Olga Yakovenko,et al.  Uncoiling Mechanics of Escherichia coli Type I Fimbriae Are Optimized for Catch Bonds , 2006, PLoS biology.

[8]  Terri A. Camesano,et al.  Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques , 2007 .

[9]  Yves F. Dufrêne,et al.  Towards nanomicrobiology using atomic force microscopy , 2008, Nature Reviews Microbiology.

[10]  M. Sheetz,et al.  Force-dependent polymorphism in type IV pili reveals hidden epitopes , 2010, Proceedings of the National Academy of Sciences.

[11]  A. Beaussart,et al.  Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy , 2014, Nature Protocols.

[12]  S. Schedin,et al.  Dynamic restacking of Escherichia Coli P-pili , 2008, European Biophysics Journal.

[13]  M. Otto Staphylococcus epidermidis — the 'accidental' pathogen , 2009, Nature Reviews Microbiology.

[14]  Andres F Oberhauser,et al.  The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. , 2006, Biophysical journal.

[15]  H. C. van der Mei,et al.  How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State? , 2012, PLoS pathogens.

[16]  T. Camesano,et al.  Oral consumption of cranberry juice cocktail inhibits molecular-scale adhesion of clinical uropathogenic Escherichia coli. , 2011, Journal of medicinal food.

[17]  Daniel J Müller,et al.  Force probing surfaces of living cells to molecular resolution. , 2009, Nature chemical biology.

[18]  J MEAD,et al.  Mechanical properties of lungs. , 1961, Physiological reviews.

[19]  Specific Molecular Recognition and Nonspecific Contributions to Bacterial Interaction Forces , 2008, Applied and Environmental Microbiology.

[20]  P. Lipke,et al.  A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions , 2007, Microbiology and Molecular Biology Reviews.

[21]  K. Verstrepen,et al.  Flocculation, adhesion and biofilm formation in yeasts , 2006, Molecular microbiology.

[22]  Edin Sarajlic,et al.  Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology , 2010 .

[23]  H C van der Mei,et al.  Physico-chemistry of initial microbial adhesive interactions--its mechanisms and methods for study. , 1999, FEMS microbiology reviews.

[24]  A. Beaussart,et al.  Single-cell force spectroscopy of probiotic bacteria. , 2013, Biophysical journal.

[25]  Thomas Bjarnsholt,et al.  Interactions in multispecies biofilms: do they actually matter? , 2014, Trends in microbiology.

[26]  Tomaso Zambelli,et al.  Force-controlled manipulation of single cells: from AFM to FluidFM. , 2014, Trends in biotechnology.

[27]  T. Camesano,et al.  Role of cranberry on bacterial adhesion forces and implications for Escherichia coli-uroepithelial cell attachment. , 2009, Journal of medicinal food.

[28]  A. Beaussart,et al.  Nanoscale Adhesion Forces of Pseudomonas aeruginosa Type IV Pili , 2014, ACS nano.

[29]  Daniel J. Muller,et al.  Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy , 2005, Journal of Cell Science.

[30]  Richard M. Pashley,et al.  Direct measurement of colloidal forces using an atomic force microscope , 1991, Nature.

[31]  M. Zupancic,et al.  A yeast by any other name: Candida glabrata and its interaction with the host. , 2005, Current opinion in microbiology.

[32]  A. Beaussart,et al.  Forces in yeast flocculation. , 2015, Nanoscale.

[33]  F. Kienberger,et al.  Multiple receptors involved in human rhinovirus attachment to live cells , 2008, Proceedings of the National Academy of Sciences.

[34]  L. J. Douglas,et al.  Candida biofilms and their role in infection. , 2003, Trends in microbiology.

[35]  Magnus Hook,et al.  A “dock, lock, and latch” Structural Model for a Staphylococcal Adhesin Binding to Fibrinogen , 2003, Cell.

[36]  A. Beaussart,et al.  Force nanoscopy of hydrophobic interactions in the fungal pathogen Candida glabrata. , 2015, ACS nano.

[37]  P. Loubière,et al.  Measuring kinetic dissociation/association constants between Lactococcus lactis bacteria and mucins using living cell probes. , 2011, Biophysical journal.

[38]  H. C. van der Mei,et al.  Surface thermodynamic and adhesion force evaluation of the role of chitin-binding protein in the physical interaction between Pseudomonas aeruginosa and Candida albicans. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[39]  P. Lipke,et al.  Quantifying the forces driving cell-cell adhesion in a fungal pathogen. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[40]  Tomaso Zambelli,et al.  Rapid and Serial Quantification of Adhesion Forces of Yeast and Mammalian Cells , 2012, PloS one.

[41]  Chris J. Wright,et al.  Atomic Force Microscopy Study of the Adhesion of Saccharomyces cerevisiae. , 2001, Journal of colloid and interface science.

[42]  Yves F Dufrêne,et al.  Single-Cell Force Spectroscopy of Als-Mediated Fungal Adhesion. , 2013, Analytical methods : advancing methods and applications.

[43]  Nidal Hilal,et al.  Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope , 1998 .

[44]  A. Beaussart,et al.  Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG. , 2013, ACS nano.

[45]  H. Busscher,et al.  Force microscopic and thermodynamic analysis of the adhesion between Pseudomonas aeruginosa and Candida albicans , 2012 .

[46]  Stéphane Cuenot,et al.  Nanoscale mapping and functional analysis of individual adhesins on living bacteria , 2005, Nature Methods.

[47]  G. Georgiou,et al.  Molecular determinants of bacterial adhesion monitored by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Yves F Dufrêne,et al.  Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction. , 2013, Nanoscale.

[49]  Seoktae Kang,et al.  Bioinspired single bacterial cell force spectroscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[50]  P. Lipke,et al.  Strengthening relationships: amyloids create adhesion nanodomains in yeasts. , 2012, Trends in microbiology.

[51]  A. Beaussart,et al.  The binding force of the staphylococcal adhesin SdrG is remarkably strong , 2014, Molecular microbiology.

[52]  R. Doyle Contribution of the hydrophobic effect to microbial infection. , 2000, Microbes and infection.

[53]  Mukul M. Sharma,et al.  Adhesion Forces between E. c oli Bacteria and Biomaterial Surfaces , 1999 .

[54]  Matthew R Chapman,et al.  Diversity, biogenesis and function of microbial amyloids. , 2012, Trends in microbiology.

[55]  R. Belas,et al.  Biofilms, flagella, and mechanosensing of surfaces by bacteria. , 2014, Trends in microbiology.

[56]  T. Camesano,et al.  Nanoscale Investigation of Pathogenic Microbial Adhesion to a Biomaterial , 2004, Applied and Environmental Microbiology.

[57]  Yves F Dufrêne,et al.  Unfolding individual als5p adhesion proteins on live cells. , 2009, ACS nano.

[58]  Daniel J. Muller,et al.  Single-cell force spectroscopy , 2008, Journal of Cell Science.

[59]  Edwin van den Heuvel,et al.  Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli , 2012, PloS one.

[60]  Tomaso Zambelli,et al.  FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. , 2009, Nano letters.

[61]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[62]  H. C. van der Mei,et al.  Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. , 2012, Microbiology.

[63]  A. Beaussart,et al.  Single-cell force spectroscopy of pili-mediated adhesion. , 2014, Nanoscale.

[64]  David Alsteens,et al.  Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis. , 2012, ACS nano.

[65]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[66]  Zemer Gitai,et al.  New fluorescence microscopy methods for microbiology: sharper, faster, and quantitative. , 2009, Current opinion in microbiology.

[67]  Yatao Liu,et al.  Microscale correlation between surface chemistry, texture, and the adhesive strength of Staphylococcus epidermidis. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[68]  Hermann E. Gaub,et al.  Discrete interactions in cell adhesion measured by single-molecule force spectroscopy , 2000, Nature Cell Biology.

[69]  G. O’Toole,et al.  Single-molecule analysis of Pseudomonas fluorescens footprints. , 2014, ACS nano.

[70]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[71]  R. Kolter,et al.  Pseudomonas-Candida Interactions: An Ecological Role for Virulence Factors , 2002, Science.

[72]  T. Camesano,et al.  Direct adhesion force measurements between E. coli and human uroepithelial cells in cranberry juice cocktail. , 2010, Molecular nutrition & food research.

[73]  H. C. van der Mei,et al.  Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae , 2012, BMC Microbiology.