Post-translational modifications regulate microtubule function

[1]  D. Fesquet,et al.  Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase , 2003, Journal of Cell Science.

[2]  Stuart L Schreiber,et al.  Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  P. Matthias,et al.  HDAC‐6 interacts with and deacetylates tubulin and microtubules in vivo , 2003, The EMBO journal.

[4]  J. Denu,et al.  The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. , 2003, Molecular cell.

[5]  S. Horinouchi,et al.  In vivo destabilization of dynamic microtubules by HDAC6‐mediated deacetylation , 2002, The EMBO journal.

[6]  K. Dewar,et al.  A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish , 2002, Development.

[7]  K. Weber,et al.  Identification of CfNek, a novel member of the NIMA family of cell cycle regulators, as a polypeptide copurifying with tubulin polyglutamylation activity in Crithidia , 2002, Journal of Cell Science.

[8]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[9]  G. Pazour,et al.  Intraflagellar transport and cilia-dependent diseases. , 2002, Trends in cell biology.

[10]  A. Banerjee Coordination of Posttranslational Modifications of Bovine Brain α-Tubulin , 2002, The Journal of Biological Chemistry.

[11]  J. Rossier,et al.  Functional role of ɛ-tubulin in the assembly of the centriolar microtubule scaffold , 2002, The Journal of cell biology.

[12]  A. Prasad,et al.  Alteration of the C-terminal Amino Acid of Tubulin Specifically Inhibits Myogenic Differentiation* , 2002, The Journal of Biological Chemistry.

[13]  Xiao-Fan Wang,et al.  HDAC6 is a microtubule-associated deacetylase , 2002, Nature.

[14]  C. Gagnon,et al.  Differential distribution of glutamylated tubulin isoforms along the sea urchin sperm axoneme , 2002, Molecular reproduction and development.

[15]  J. Gaertig,et al.  Polyglycylation domain of β-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena , 2002, Nature Cell Biology.

[16]  M. Gorovsky,et al.  Both Carboxy-Terminal Tails of α- and β-Tubulin Are Essential, but Either One Will Suffice , 2002, Current Biology.

[17]  M. Bornens Centrosome composition and microtubule anchoring mechanisms. , 2002, Current opinion in cell biology.

[18]  Robert J. Bishop,et al.  Single Site α-Tubulin Mutation Affects Astral Microtubules and Nuclear Positioning during Anaphase in Saccharomyces cerevisiae: Possible Role for Palmitoylation of α-Tubulin , 2001 .

[19]  K. Gull,et al.  The extended tubulin superfamily. , 2001, Journal of cell science.

[20]  G. Gundersen,et al.  mDia mediates Rho-regulated formation and orientation of stable microtubules , 2001, Nature Cell Biology.

[21]  J. Wehland,et al.  Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. , 2001, Cancer research.

[22]  P. Denoulet,et al.  Differential Binding Regulation of Microtubule-associated Proteins MAP1A, MAP1B, and MAP2 by Tubulin Polyglutamylation* , 2001, The Journal of Biological Chemistry.

[23]  Ronald D. Vale,et al.  Engineering the Processive Run Length of the Kinesin Motor , 2000, The Journal of cell biology.

[24]  G. Borisy,et al.  Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. , 2000, Journal of cell science.

[25]  S. Geimer,et al.  Distribution of polyglutamylated tubulin in the flagellar apparatus of green flagellates. , 2000, Cell motility and the cytoskeleton.

[26]  J. Wehland,et al.  Incorporation of nitrotyrosine into α-tubulin by recombinant mammalian tubulin-tyrosine ligase , 2000 .

[27]  Dylan T Burnette,et al.  Polyglycylation of Tubulin Is Essential and Affects Cell Motility and Division in Tetrahymena thermophila , 2000, The Journal of cell biology.

[28]  C. Regnard,et al.  Polyglutamylation of Nucleosome Assembly Proteins* , 2000, The Journal of Biological Chemistry.

[29]  N. Hirokawa,et al.  Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[31]  E. Birkenmeier,et al.  Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Denoulet,et al.  Tubulin polyglutamylase: isozymic variants and regulation during the cell cycle in HeLa cells. , 1999, Journal of cell science.

[33]  J. Laoukili,et al.  Polyglutamylation and polyglycylation of alpha- and beta-tubulins during in vitro ciliated cell differentiation of human respiratory epithelial cells. , 1999, Journal of cell science.

[34]  K. Weber,et al.  Synthetic peptides identify the minimal substrate requirements of tubulin polyglutamylase in side chain elongation , 1999, FEBS letters.

[35]  A. Schneider,et al.  Isolation of tubulin polyglutamylase from Crithidia; binding to microtubules and tubulin, and glutamylation of mammalian brain alpha- and beta-tubulins. , 1999, Journal of cell science.

[36]  B. Freeman,et al.  Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Kreitzer,et al.  Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. , 1999, Molecular biology of the cell.

[38]  D. Andreu,et al.  Helicity of α(404–451) and β(394–445) tubulin C‐terminal recombinant peptides , 1999, Protein science : a publication of the Protein Society.

[39]  J. Rossier,et al.  Structural characterization by tandem mass spectrometry of the posttranslational polyglycylation of tubulin. , 1999, Biochemistry.

[40]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[41]  L. Mir,et al.  Centriole Disassembly In Vivo and Its Effect on Centrosome Structure and Function in Vertebrate Cells , 1998, The Journal of cell biology.

[42]  J. Rossier,et al.  Posttranslational modifications of the C-terminus of alpha-tubulin in adult rat brain: alpha 4 is glutamylated at two residues. , 1998, Biochemistry.

[43]  J. Rossier,et al.  Tubulin polyglycylation: differential posttranslational modification of dynamic cytoplasmic and stable axonemal microtubules in paramecium. , 1998, Molecular biology of the cell.

[44]  A. Schneider,et al.  Posttranslational modifications of trichomonad tubulins; identification of multiple glutamylation sites , 1998, FEBS letters.

[45]  B. Eddé,et al.  Tubulin polyglutamylase: partial purification and enzymatic properties. , 1998, Biochemistry.

[46]  E. Nogales,et al.  Tubulin and FtsZ form a distinct family of GTPases , 1998, Nature Structural Biology.

[47]  Kenneth H. Downing,et al.  Correction: Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[48]  G. Gundersen,et al.  Kinesin Is a Candidate for Cross-bridging Microtubules and Intermediate Filaments , 1998, The Journal of Biological Chemistry.

[49]  G. Gundersen,et al.  Rho Guanosine Triphosphatase Mediates the Selective Stabilization of Microtubules Induced by Lysophosphatidic Acid , 1998, The Journal of cell biology.

[50]  K. Johnson,et al.  The axonemal microtubules of the Chlamydomonas flagellum differ in tubulin isoform content. , 1998, Journal of cell science.

[51]  J. Wehland,et al.  Suppression of tubulin tyrosine ligase during tumor growth. , 1998, Journal of cell science.

[52]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[53]  A. Schneider,et al.  Posttranslational modifications of α‐ and β‐tubulin in Giardia lamblia, an ancient eukaryote , 1997, FEBS letters.

[54]  Michael Y. Galperin,et al.  A diverse superfamily of enzymes with ATP‐dependent carboxylate—amine/thiol ligase activity , 1997, Protein science : a publication of the Protein Society.

[55]  J. Rossier,et al.  Sequencing branched peptides with CID/PSD MALDI-TOF in the low-picomole range: application to the structural study of the posttranslational polyglycylation of tubulin. , 1997, Analytical chemistry.

[56]  M. Scott,et al.  Costal2, a Novel Kinesin-Related Protein in the Hedgehog Signaling Pathway , 1997, Cell.

[57]  U. Plessmann,et al.  Mammalian Sperm Tubulin: An Exceptionally Large Number of Variants Based on Several Posttranslational Modifications , 1997, Journal of protein chemistry.

[58]  J. Mary,et al.  Posttranslational Modifications of Axonemal Tubulin , 1997, Journal of protein chemistry.

[59]  J. Caron Posttranslational modification of tubulin by palmitoylation: I. In vivo and cell-free studies. , 1997, Molecular biology of the cell.

[60]  J. Ozols,et al.  Posttranslational modification of tubulin by palmitoylation: II. Identification of sites of palmitoylation. , 1997, Molecular biology of the cell.

[61]  T. MacRae Tubulin post-translational modifications--enzymes and their mechanisms of action. , 1997, European journal of biochemistry.

[62]  K. Gull,et al.  Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms , 1987, The Journal of cell biology.

[63]  A. Schneider,et al.  Polyglycylation of tubulin in the diplomonad Giardia lamblia, one of the oldest eukaryotes , 1996, FEBS letters.

[64]  F. Gros,et al.  Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. , 1996, The Journal of biological chemistry.

[65]  F. Gros,et al.  Interaction of Kinesin Motor Domains with α- and β-Tubulin Subunits at a Tau-independent Binding Site , 1996, The Journal of Biological Chemistry.

[66]  U. Plessmann,et al.  The A and B tubules of the outer doublets of sea urchin sperm axonemes are composed of different tubulin variants. , 1996, Biochemistry.

[67]  C. Gagnon,et al.  The polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility. , 1996, Journal of cell science.

[68]  J. Rossier,et al.  Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. , 1996, Journal of cell science.

[69]  G. Gundersen,et al.  Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts , 1995, The Journal of cell biology.

[70]  M. Gorovsky,et al.  Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila , 1995, The Journal of cell biology.

[71]  U. Plessmann,et al.  β tubulin of bull sperm is polyglycylated , 1995, FEBS letters.

[72]  J. Rossier,et al.  Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. , 1994, Science.

[73]  J. Rossier,et al.  Class I and IVa β‐tubulin isotypes expressed in adult mouse brain are glutamylated , 1994, FEBS letters.

[74]  K. Weber,et al.  The carboxy-terminal peptide of detyrosinated alpha tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase. , 1994, European journal of biochemistry.

[75]  E. Raff,et al.  Tissue-specific microtubule functions in Drosophila spermatogenesis require the beta 2-tubulin isotype-specific carboxy terminus. , 1993, Developmental biology.

[76]  B. Eddé,et al.  Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons. , 1993, Molecular biology of the cell.

[77]  U. Plessmann,et al.  Characterization of the tubulin-tyrosine ligase , 1993, The Journal of cell biology.

[78]  J. Wehland,et al.  Class II tubulin, the major brain β tubulin isotype is polyglutamylated on glutamic acid residue 435 , 1992, FEBS letters.

[79]  M. R. Mejillano,et al.  The conversion of tubulin carboxyl groups to amides has a stabilizing effect on microtubules. , 1992, Biochemistry.

[80]  J. L. Le Caer,et al.  Characterization of a major brain tubulin variant which cannot be tyrosinated. , 1991, Biochemistry.

[81]  A. Frankfurter,et al.  Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. R. Mejillano,et al.  Assembly properties of tubulin after carboxyl group modification. , 1991, The Journal of biological chemistry.

[83]  G. Borisy,et al.  Detyrosination of alpha tubulin does not stabilize microtubules in vivo [published erratum appears in J Cell Biol 1990 Sep;111(3):1325-6] , 1990, The Journal of cell biology.

[84]  J. Rossier,et al.  Posttranslational glutamylation of alpha-tubulin. , 1990, Science.

[85]  K. Gull,et al.  Tubulin post-translational modifications and the construction of microtubular organelles in Trypanosoma brucei. , 1988, Journal of cell science.

[86]  K. Weber,et al.  Turnover of the carboxy-terminal tyrosine of alpha-tubulin and means of reaching elevated levels of detyrosination in living cells. , 1987, Journal of cell science.

[87]  G. Piperno,et al.  Identification of an acetylation site of Chlamydomonas alpha-tubulin. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[88]  G. Borisy,et al.  Assembly and turnover of detyrosinated tubulin in vivo , 1987, The Journal of cell biology.

[89]  J. Rosenbaum,et al.  The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules , 1986, The Journal of cell biology.

[90]  K. Sullivan,et al.  Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[91]  M. Kirschner,et al.  A polymer-dependent increase in phosphorylation of beta-tubulin accompanies differentiation of a mouse neuroblastoma cell line , 1985, The Journal of cell biology.

[92]  J. Rosenbaum,et al.  Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. , 1985, Biochemistry.

[93]  H. Murofushi Purification and characterization of tubulin-tyrosine ligase from porcine brain. , 1980, Journal of biochemistry.

[94]  H. Barra,et al.  Tubulinyl‐tyrosine Carboxypeptidase from Chicken Brain: Properties and Partial Purification , 1980, Journal of neurochemistry.

[95]  H. Barra,et al.  Release of [14C]tyrosine from tubulinyl-[14C]tyrosine by brain extract. Separation of a carboxypeptidase from tubulin-tyrosine ligase , 1978, Molecular and Cellular Biochemistry.

[96]  H. Barra,et al.  In vivo incorporation of [14C]tyrosine into the C-terminal position of the α subunit of tubulin☆ , 1977 .

[97]  H. Barra,et al.  Incorporation of L-tyrosine, L-phenylalanine and L-3,4-dihydroxyphenylalanine as single units into rat brain tubulin. , 1975, European journal of biochemistry.

[98]  B. Eipper Properties of rat brain tubulin. , 1974, The Journal of biological chemistry.

[99]  H. Barra,et al.  A SOLUBLE PREPARATION FROM RAT BRAIN THAT INCORPORATES INTO ITS OWN PROTEINS [14C]ARGININE BY A RIBONUCLEASE‐SENSITIVE SYSTEM AND [14C]TYROSINE BY A RIBONUCLEASE‐INSENSITIVE SYSTEM , 1973, Journal of neurochemistry.

[100]  이기수,et al.  II , 1856, My Karst and My City and Other Essays.

[101]  A. Schneider,et al.  Isolation of tubulin polyglutamylase from Crithidia ; binding to microtubules and tubulin , and glutamylation of mammalian brain α-and β-tubulins , 1999 .

[102]  M. Bornens,et al.  Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. , 1998, Cell motility and the cytoskeleton.

[103]  R. Luduena Multiple forms of tubulin: different gene products and covalent modifications. , 1998, International review of cytology.

[104]  M. Bré,et al.  Glutamylated tubulin probed in ciliates with the monoclonal antibody GT335. , 1994, Cell motility and the cytoskeleton.

[105]  K. Kozminski,et al.  High level expression of nonacetylatable α‐tubulin in Chlamydomonas reinhardtii , 1993 .

[106]  J. Laoukili,et al.  Polyglutamylation and polyglycylation of α-and β-tubulins during in vitro ciliated cell differentiation of human respiratory epithelial cells , 2022 .