Sparse-Sensor Placement for Wind Farm Control

The objective of this paper is to incorporate sparse sensor data to improve flow-field estimates in a wind farm, which can then be used to perform better online wind farm optimization and control. A sparse-sensing algorithm is used to determine the optimal locations of sensors to improve the overall estimation precision of the flow field within the wind farm. This algorithm takes advantage of the dominant atmospheric structures in a wind farm to reconstruct the flow field from point measurements in the field. These measurements, in their optimal locations, have the ability to improve the observability of a wind farm and thus provide faster, more accurate, state estimation.

[1]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[2]  J. Michalakes,et al.  A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics , 2012 .

[3]  Carlo L. Bottasso,et al.  Wind tunnel testing of wake control strategies , 2016, 2016 American Control Conference (ACC).

[4]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[5]  Jennifer Annoni,et al.  A tutorial on control-oriented modeling and control of wind farms , 2017, 2017 American Control Conference (ACC).

[6]  Steven L. Brunton,et al.  Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns , 2017, IEEE Control Systems.

[7]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[8]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[9]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[10]  Mario A. Rotea,et al.  Data-driven Reduced Order Model for prediction of wind turbine wakes , 2015 .

[11]  Kathryn E. Johnson,et al.  Wind farm control: Addressing the aerodynamic interaction among wind turbines , 2009, 2009 American Control Conference.

[12]  P. Seiler,et al.  A method to construct reduced‐order parameter‐varying models , 2017 .

[13]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[14]  Carlo L. Bottasso,et al.  Wake detection for wind farm control - Formulation and validation , 2016 .

[15]  Peter J Seiler,et al.  Wind farm modeling and control using dynamic mode decomposition , 2016 .

[16]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[17]  Jan-Willem van Wingerden,et al.  Ensemble Kalman filtering for wind field estimation in wind farms , 2017, 2017 American Control Conference (ACC).

[18]  Johan Meyers,et al.  Dynamic wake modeling and state estimation for improved model-based receding horizon control of wind farms , 2017, 2017 American Control Conference (ACC).

[19]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[20]  Marc Calaf,et al.  A Generalized Framework for Reduced-Order Modeling of a Wind Turbine Wake , 2018 .

[21]  L Y Pao,et al.  Control of Wind Turbines , 2011, IEEE Control Systems.

[22]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[23]  Stefano Leonardi,et al.  A large-eddy simulation of wind-plant aerodynamics , 2012 .

[24]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[25]  Zlatko Drmac,et al.  A New Selection Operator for the Discrete Empirical Interpolation Method - Improved A Priori Error Bound and Extensions , 2015, SIAM J. Sci. Comput..

[26]  M. Loève Probability theory : foundations, random sequences , 1955 .

[27]  Max Donath,et al.  American Control Conference , 1993 .