Partial eigenvalue assignment problem of high order control systems using orthogonality relations

In this paper, we present an explicit solution to the partial eigenvalue assignment problem of high order control system using orthogonality relations between eigenvectors of the matrix polynomial. Our solution can be implemented with only a partial knowledge of the spectrum and the corresponding left eigenvectors of the matrix polynomial. We show that the number of eigenvalues and eigenvectors that need to remain unchanged will not affected by feedback. A numerical example is given to illustrate the applicability and the practical usefulness of the proposed method.

[1]  S. Srinathkumar Eigenvalue/eigenvector assignment using output feedback , 1978 .

[2]  P. Misra,et al.  Numerical algorithms for eigenvalue assignment by state feedback , 1984, Proceedings of the IEEE.

[3]  Y. Saad,et al.  Arnoldi methods for large Sylvester-like observer matrix equations, and an associated algorithm for partial spectrum assignment , 1991 .

[4]  Guo-Ping Liu,et al.  Eigenstructure Assignment for Control System Design , 1998 .

[5]  Biswa Nath Datta,et al.  Theory and computations of partial eigenvalue and eigenstructure assignment problems in matrix second-order and distributed-parameter systems , 2001 .

[6]  L. Xu,et al.  Controlling Air Vortex in Air-Vortex Spinning by Zeng-He Model , 2006 .

[7]  H. Saffari,et al.  Nonlinear Analysis of 2D-Curved Beam Elements based on Curvature Shape Function , 2007 .

[8]  Biswa Nath Datta,et al.  An algorithm to assign eigenvalues in a Hessenberg matrix: Single input case , 1987 .

[9]  B. Datta Numerical Linear Algebra and Applications , 1995 .

[10]  Jer-Nan Juang,et al.  Efficient eigenvalue assignment for large space structures , 1990 .

[11]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[12]  C. Paige,et al.  An algorithm for pole assignment of time invariant linear systems , 1982 .

[13]  B. Datta,et al.  ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .

[14]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[15]  Biswa Nath Datta,et al.  PARTIAL EIGENSTRUCTURE ASSIGNMENT FOR THE QUADRATIC PENCIL , 2000 .

[16]  Stephen Barnett,et al.  Introduction to Mathematical Control Theory , 1975 .

[17]  Thomas Kailath,et al.  Linear Systems , 1980 .

[18]  Y. Wu,et al.  Numerical Approach to Electrospinning , 2006 .

[19]  Françoise Tisseur,et al.  Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .

[20]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .