MATCH-SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation

Abstract. We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The modeled PNC size distribution peak occurs at the same or smaller particle size as the observed peak at four measurement sites spread across Europe. Total PNC is underestimated at northern and central European sites and accumulation-mode PNC is underestimated at all investigated sites. The low nucleation rate coefficient used in this study is an important reason for the underestimation. On the other hand, the model performs well for particle mass (including secondary inorganic aerosol components), while elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, in terms of biogenic emissions and chemical transformation. Updating the biogenic secondary organic aerosol (SOA) scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation.

[1]  G. Mann,et al.  The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales , 2006 .

[2]  C. O'Dowd,et al.  Primary versus secondary contributions to particle number concentrations in the European boundary layer , 2011 .

[3]  G. Mann,et al.  The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei , 2013 .

[4]  G. Mann,et al.  Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation , 2009 .

[5]  Mark Z. Jacobson,et al.  Fundamentals of atmospheric modeling , 1998 .

[6]  M. Engardt Sulphur Simulations for East Asia Using the Match Model with Meteorological Data from ECMWF , 2001 .

[7]  D. Ceburnis,et al.  Biogenically driven organic contribution to marine aerosol , 2004, Nature.

[8]  E. Vignati,et al.  Better constraints on sources of carbonaceous aerosols using a combined 14 C – macro tracer analysis in a European rural background site , 2011 .

[9]  B. Festy Review of evidence on health aspects of air pollution – REVIHAAP Project. Technical Report. World Health Organization Regional Office for Europe 2013 , 2013 .

[10]  J. Langner,et al.  MATCH - Meso-scale Atmospheric Transport and Chemistry modelling system , 1996 .

[11]  Ari Asmi,et al.  SALSA – a Sectional Aerosol module for Large Scale Applications , 2007 .

[12]  M. Jenkin,et al.  The tropospheric degradation of volatile organic compounds: a protocol for mechanism development , 1997 .

[13]  M. Facchini,et al.  On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation , 2010 .

[14]  John H. Seinfeld,et al.  Predicting global aerosol size distributions in general circulation models , 2002 .

[15]  M. Hallquist,et al.  Biotic stress: a significant contributor to organic aerosol in Europe? , 2014 .

[16]  J E Lundqvist,et al.  ICE ACCRETION ON SHIPS WITH SPECIAL EMPHASIS ON BALTIC CONDITIONS , 1977 .

[17]  M. Rummukainen Methods for statistical downscaling of GCM simulations , 1997 .

[18]  Stefan Andersson,et al.  Assessing and improving the Swedish forecast and information capabilities for ground level ozone , 2011 .

[19]  M. Jacobson Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions , 2002 .

[20]  R. Derwent,et al.  Atmospheric Chemistry and Physics Protocol for the Development of the Master Chemical Mechanism, Mcm V3 (part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds , 2022 .

[21]  Mikhail Sofiev,et al.  The European aerosol budget in 2006 , 2010 .

[22]  A. Holtslag,et al.  A comparison of boundary layer diffusion schemes in unstable conditions over land , 1995 .

[23]  Xuan Zhang,et al.  Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol , 2014, Proceedings of the National Academy of Sciences.

[24]  J. Sahlberg,et al.  A study of large scale cooling in the Bay of Bothnia , 1980 .

[25]  L. Lee,et al.  Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model , 2012 .

[26]  Joyce E. Penner,et al.  Uncertainty analysis for estimates of the first indirect aerosol effect , 2005 .

[27]  M. Gauß,et al.  The EMEP MSC-W chemical transport model -- technical description , 2012 .

[28]  E. Nilsson,et al.  Laboratory simulations and parameterization of the primary marine aerosol production , 2003 .

[29]  R. Ruedy,et al.  MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models , 2008 .

[30]  M. Kahnert On the observability of chemical and physical aerosol properties by optical observations: Inverse modelling with variational data assimilation , 2009 .

[31]  Philip Stier,et al.  Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1) , 2010 .

[32]  D. Simpson,et al.  Long-period modelling of photochemical oxidants in Europe. Model calculations for July 1985 , 1992 .

[33]  G. Mann,et al.  Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity , 2014 .

[34]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[35]  M. Rummukainen,et al.  SWECLIM - The First Three Years , 2000 .

[36]  A. Chamberlain,et al.  Transport of iodine from atmosphere to ground , 1966 .

[37]  Klaus Wyser,et al.  A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3) , 2005 .

[38]  D. Dockery,et al.  Health Effects of Fine Particulate Air Pollution: Lines that Connect , 2006, Journal of the Air & Waste Management Association.

[39]  S. Pandis,et al.  Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign , 2011 .

[40]  Barbara J. Turpin,et al.  Measuring and simulating particulate organics in the atmosphere: problems and prospects , 2000 .

[41]  M. Rummukainen,et al.  RCA - Rossby Centre regional Atmospheric climate model: model description and results from the first multi-year simulation , 1997 .

[42]  H. Rodhe,et al.  The Chernobyl accident – A meteorological analysis of how radionucleides reached Sweden , 1986 .

[43]  Jenise L. Swall,et al.  Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression , 2010 .

[44]  Miikka Dal Maso,et al.  Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland , 2005 .

[45]  P. Adams,et al.  Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations , 2009 .

[46]  M. Rummukainen,et al.  Nordic regionalisation of a greenhouse-gas stabilisation scenario , 2006 .

[47]  D. Ceburnis,et al.  Light-absorbing carbon in Europe – measurement and modelling, with a focus on residential wood combustion emissions , 2013 .

[48]  M. Esselborn,et al.  Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe , 2010 .

[49]  K. Lehtinen,et al.  Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation , 2007 .

[50]  M. Jacobson Numerical Techniques to Solve Condensational and Dissolutional Growth Equations When Growth is Coupled to Reversible Reactions , 1997 .

[51]  Jesper Heile Christensen,et al.  Development of a High-Resolution Nested Air Pollution Model: The Numerical Approach , 2002 .

[52]  Stefan Reis,et al.  Emissions of air pollutants : measurements, calculations and uncertainties , 2004 .

[53]  Richard Neale,et al.  Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 , 2012 .

[54]  S. Pryor,et al.  Sea salt generation, dispersion and removal on the regional scale , 2005 .

[55]  Andreas Wahner,et al.  Photochemical production of aerosols from real plant emissions , 2009 .

[56]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[57]  T. J. Wallington,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species , 2006 .

[58]  H. Kjaergaard,et al.  A large source of low-volatility secondary organic aerosol , 2014, Nature.

[59]  R. A. Cox,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens , 2006 .

[60]  Renske Timmermans,et al.  The LOTOS?EUROS model: description, validation and latest developments , 2008 .

[61]  Ari Laaksonen,et al.  Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration , 2006 .

[62]  Kaarle Kupiainen,et al.  Modeling carbonaceous aerosol over Europe: Analysis of the CARBOSOL and EMEP EC/OC campaigns , 2007 .

[63]  K. Lehtinen,et al.  The role of low volatile organics on secondary organic aerosol formation , 2013 .

[64]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[65]  I. Riipinen,et al.  Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä , 2006 .

[66]  D. Simpson,et al.  Modelling of Organic Aerosols over Europe (2002–2007) Using a Volatility Basis Set (vbs) Framework: Application of Different Assumptions regarding the Formation of Secondary Organic Aerosol , 2012 .

[67]  J. Penner,et al.  Can global models ignore the chemical composition of aerosols? , 2010 .

[68]  U. Lohmann,et al.  The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations , 2012 .

[69]  C. N. Hewitt,et al.  Biogenic emissions in Europe: 1. Estimates and uncertainties , 1995 .

[70]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[71]  G. Lindström,et al.  The land surface treatment for the Rossby Centre Regional Atmospheric Climate Model - version 2 (RCA2) , 2001 .

[72]  I. Riipinen,et al.  Particle Number Concentrations over Europe in 2030 Printer-friendly Version Interactive Discussion , 2022 .

[73]  J. Seinfeld,et al.  Sectional representations for simulating aerosol dynamics , 1980 .

[74]  M. Kahnert Variational data analysis of aerosol species in a regional CTM: background error covariance constraint and aerosol optical observation operators , 2008 .

[75]  Frank Arnold,et al.  Atmospheric sulphuric acid and aerosol formation : implications from atmospheric measurements for nucleation and early growth mechanisms , 2006 .

[76]  M. Rummukainen,et al.  The First Rossby Centre Regional Climate Scenario - Dynamical Downscaling of CO2-induced Climate Change in the HadCM2 GCM , 1999 .

[77]  A. Peters,et al.  Respiratory effects are associated with the number of ultrafine particles. , 1997, American journal of respiratory and critical care medicine.

[78]  Joakim Langner,et al.  An Eulerian limited-area atmospheric transport model , 1999 .

[79]  F. Yu,et al.  Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations , 2009 .

[80]  Leiming Zhang,et al.  A size-segregated particle dry deposition scheme for an atmospheric aerosol module , 2001 .

[81]  John H. Seinfeld,et al.  The formation, properties and impact of secondary organic aerosol: current and emerging issues , 2009 .

[82]  Peter H. McMurry,et al.  Modal Aerosol Dynamics Modeling , 1997 .

[83]  C. Persson,et al.  En modell för beräkning av luftföroreningars spridning och deposition på mesoskala , 1980 .

[84]  M. Rummukainen,et al.  Climate indices for vulnerability assessments , 2007 .

[85]  Martyn P. Chipperfield,et al.  A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties , 2005 .

[86]  Gunnar Omstedt An operational air pollution model using routine meteorological data , 1984 .

[87]  G. M. Hidy,et al.  The Health Relevance of Ambient Particulate Matter Characteristics: Coherence of Toxicological and Epidemiological Inferences , 2006, Inhalation toxicology.

[88]  S. Ghan,et al.  A parameterization of aerosol activation 3. Sectional representation , 2002 .

[89]  M. Kulmala,et al.  Parametrization of ternary nucleation rates for H2SO4‐NH3‐H2O vapors , 2002 .

[90]  Interactive comment on “MATCH–SALSA – Multi-scale Atmospheric Transport and CHemistry , 2014 .

[91]  C. Timmreck,et al.  An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions , 2002 .

[92]  M. Jacobson Developing, coupling, and applying a gas, aerosol, transport, and radiation model to study urban and regional air pollution , 1995 .

[93]  S. Bodin,et al.  Uncertainty in wind forecasting for wind power networks , 1980 .

[94]  T. Tuch,et al.  Structure, variability and persistence of the submicrometre marine aerosol , 2004 .

[95]  B. Weiss,et al.  Association of particulate air pollution and acute mortality: involvement of ultrafine particles? , 1995, Inhalation toxicology.

[96]  J. Hales,et al.  Statistical aspects of the washout of polydisperse aerosols , 1976 .

[97]  T. Andersson,et al.  A field test of thermometer screens , 1991 .

[98]  Erik Berge,et al.  Coupling of wet scavenging of sulphur to clouds in a numerical weather prediction model , 1993 .

[99]  Tomas Landelius,et al.  A system for modelling solar radiation parameters with mesoscale spatial resolution , 2001 .

[100]  D. Giannadaki,et al.  Geoscientific Model Development Description and evaluation of GMXe : a new aerosol submodel for global simulations ( v 1 ) , 2010 .

[101]  Michael D. Moran,et al.  Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII project , 2012 .

[102]  G. Mann,et al.  A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties , 2005 .

[103]  Joakim Langner,et al.  Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis , 2007 .

[104]  William P. L. Carter,et al.  Condensed atmospheric photooxidation mechanisms for isoprene , 1996 .

[105]  K. Lehtinen,et al.  Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects , 2013 .

[106]  C. Johansson,et al.  Air pollution episodes in Stockholm regional background air due to sources in Europe and their effects on human population , 2013 .

[107]  D. Byun,et al.  Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System , 2006 .

[108]  J. Seinfeld,et al.  Chemical Amplification (or Dampening) of the Twomey Effect: Conditions Derived from Droplet Activation Theory , 2004 .

[109]  Alma Hodzic,et al.  A model inter-comparison study focussing on episodes with elevated PM10 concentrations , 2008 .

[110]  K. Lehtinen,et al.  Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model , 2011 .

[111]  H. Hansson,et al.  High Natural Aerosol Loading over Boreal Forests , 2006, Science.

[112]  M. Kulmala,et al.  An improved model for ternary nucleation of sulfuric acid–ammonia–water , 2002 .

[113]  Qi Zhang,et al.  O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. , 2008, Environmental science & technology.

[114]  Christer Johansson,et al.  Population exposure and mortality due to regional background PM in Europe - Long-term simulations of source region and shipping contributions , 2009 .

[115]  Erik Lebret,et al.  Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways , 2009, Particle and Fibre Toxicology.

[116]  Z. Klimont,et al.  Primary emissions of fine carbonaceous particles in Europe , 2007 .

[117]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[118]  I. Riipinen,et al.  Evidence for the role of organics in aerosol particle formation under atmospheric conditions , 2010, Proceedings of the National Academy of Sciences.

[119]  Jaakko Kukkonen,et al.  A review of operational, regional-scale, chemical weather forecasting models in Europe , 2012 .

[120]  Gunnar Omstedt,et al.  Människors exponering för luftföroreningar , 1990 .

[121]  Christer Johansson,et al.  Urban scale modeling of particle number concentration in Stockholm , 2005 .