Flood frequency hydrology: 2. Combining data evidence

[1] In a companion paper (Merz and Bloschl, 2008) we argue that it is very useful to expand the information beyond the flood sample at a site of interest to better represent the diversity of flood processes in estimating flood frequencies. In this paper we present a framework of how to combine different sources of information by hydrological reasoning to obtain more informed estimates of flood frequencies. These sources of information include the local flood peak sample and temporal, spatial, and causal expansion of information. As most of this information is independent, one would expect that the final estimate is more reliable than each of the individual sources, including the flood peak sample alone. To illustrate the proposed framework, four examples from Austria are given. In all four examples the statistical analyses of the flood records do not fully represent the site-specific flood behavior in the light of the more complete information. The strengths of the proposed framework are its flexibility, in that more weight can be given to sources that are known with better confidence than others, and the ability to account for local particularities of catchments in terms of hydrological processes and data availability.

[1]  Statistische Analyse von Hochwasserabflüssen , 1999 .

[2]  Gerd Tetzlaff,et al.  Extreme floods in central Europe over the past 500 years: Role of cyclone pathway ''Zugstrasse Vb'' , 2004 .

[3]  D. Burn Evaluation of regional flood frequency analysis with a region of influence approach , 1990 .

[4]  J. Stedinger Frequency analysis of extreme events , 1993 .

[5]  Günter Blöschl,et al.  Ensemble prediction of floods – catchment non-linearity and forecast probabilities , 2007 .

[6]  B. Bobée,et al.  Recent advances in flood frequency analysis , 1995 .

[7]  Günter Blöschl,et al.  Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information , 2008 .

[8]  Ralf Merz,et al.  Zur Answendbarkeit des Gradex-Verfahrens in Österreich , 1999 .

[9]  Mauro Naghettini,et al.  Estimating the upper tail of flood‐peak frequency distributions using hydrometeorological information , 1996 .

[10]  Murugesu Sivapalan,et al.  Linking flood frequency to long‐term water balance: Incorporating effects of seasonality , 2005 .

[11]  Günter Blöschl,et al.  National flood discharge mapping in Austria , 2008 .

[12]  G. Tasker Regional Analysis of Flood Frequencies , 1987 .

[13]  Günter Blöschl,et al.  A spatially distributed flash flood forecasting model , 2008, Environ. Model. Softw..

[14]  P. Moran The statistical treatment of flood flows , 1957 .

[15]  G. Blöschl,et al.  Flood frequency regionalisation—spatial proximity vs. catchment attributes , 2005 .

[16]  Keith Beven,et al.  On hydrologic similarity: 3. A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation , 1990 .

[17]  Günter Blöschl,et al.  Spatio-temporal variability of event runoff coefficients , 2006 .

[18]  Günter Blöschl,et al.  Das Katastrophenhochwasser vom 7. August 2002 am Kamp — Eine erste Einschätzung , 2002 .

[19]  R. Merz,et al.  A process typology of regional floods , 2003 .

[20]  G. Blöschl,et al.  Ein „Mehr-Standbeine”-Ansatz zur Ermittlung von Bemessungshochwässern kleiner Auftretenswahrscheinlichkeit , 2006 .

[21]  Eric F. Wood,et al.  Bayesian inference and decision making for extreme hydrologic events , 1975 .

[22]  P. S. Eagleson Dynamics of flood frequency , 1972 .

[23]  G. Benito,et al.  Palaeoflood hydrology and its role in applied hydrological sciences , 2005 .

[24]  J. R. Wallis,et al.  Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .

[25]  Khaled H. Hamed,et al.  Flood Frequency Analysis , 1999 .

[26]  G. Blöschl,et al.  Top-kriging - geostatistics on stream networks , 2005 .