Complementability of isometric copies of ℓ1 in transportation cost spaces

[1]  Sofiya Ostrovska,et al.  Isometric structure of transportation cost spaces on finite metric spaces , 2021, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[2]  S. Dilworth,et al.  Analysis on Laakso graphs with application to the structure of transportation cost spaces , 2020, Positivity.

[3]  A. Zvavitch,et al.  Geometry and volume product of finite dimensional Lipschitz-free spaces , 2019, Journal of Functional Analysis.

[4]  M. Ostrovskii,et al.  On relations between transportation cost spaces and ℓ1 , 2019, 1910.03625.

[5]  R. Aliaga,et al.  Embeddings of Lipschitz-free spaces into ℓ1 , 2019, Journal of Functional Analysis.

[6]  F. Albiac,et al.  Embeddability of ℓ and bases in Lipschitz free p-spaces for 0 < p ≤ 1 , 2019, 1905.07201.

[7]  M. Ostrovskii,et al.  Generalized Transportation Cost Spaces , 2019, Mediterranean Journal of Mathematics.

[8]  F. Smithies Linear Operators , 2019, Nature.

[9]  Assaf Naor,et al.  Metric dimension reduction: A snapshot of the Ribe program , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[10]  S. Dilworth,et al.  Lipschitz-free Spaces on Finite Metric Spaces , 2018, Canadian Journal of Mathematics.

[11]  Marek C'uth,et al.  Isometric embedding of ℓ₁ into Lipschitz-free spaces and ℓ_{∞} into their duals , 2016, 1604.04131.

[12]  P. Wojtaszczyk,et al.  On the structure of Lipschitz-free spaces , 2015, 1505.07209.

[13]  P. Kaufmann,et al.  Characterization of metric spaces whose free space is isometric to $\ell_1$ , 2015, 1502.02719.

[14]  M. Ostrovskii Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces , 2013 .

[15]  Alexandre Godard Tree metrics and their Lipschitz-free spaces , 2009, 0904.3178.

[16]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[17]  L. Kantorovich On the Translocation of Masses , 2006 .

[18]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[19]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[20]  R. Arens,et al.  On embedding uniform and topological spaces. , 1956 .

[21]  R. Mortini,et al.  Lipschitz algebras , 2021, Extension Problems and Stable Ranks.

[22]  M. Ostrovskii,et al.  Isometric copies of l n ∞ and l n 1 in transportation cost spaces on finite metric spaces , 2019 .

[23]  G. Godefroy,et al.  Spaces of Lipschitz and Hölder functions and their applications , 2016 .

[24]  Ells,et al.  ON EMBEDDING UNIFORM AND TOPOLOGICAL SPACES , 2012 .

[25]  Jane Zundel MATCHING THEORY , 2011 .

[26]  G. Godefroy,et al.  Lipschitz-free Banach spaces , 2003 .

[27]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[28]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[29]  S. Banach,et al.  Théorie des opérations linéaires , 1932 .