Complementability of isometric copies of ℓ1 in transportation cost spaces
暂无分享,去创建一个
[1] Sofiya Ostrovska,et al. Isometric structure of transportation cost spaces on finite metric spaces , 2021, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[2] S. Dilworth,et al. Analysis on Laakso graphs with application to the structure of transportation cost spaces , 2020, Positivity.
[3] A. Zvavitch,et al. Geometry and volume product of finite dimensional Lipschitz-free spaces , 2019, Journal of Functional Analysis.
[4] M. Ostrovskii,et al. On relations between transportation cost spaces and ℓ1 , 2019, 1910.03625.
[5] R. Aliaga,et al. Embeddings of Lipschitz-free spaces into ℓ1 , 2019, Journal of Functional Analysis.
[6] F. Albiac,et al. Embeddability of ℓ and bases in Lipschitz free p-spaces for 0 < p ≤ 1 , 2019, 1905.07201.
[7] M. Ostrovskii,et al. Generalized Transportation Cost Spaces , 2019, Mediterranean Journal of Mathematics.
[8] F. Smithies. Linear Operators , 2019, Nature.
[9] Assaf Naor,et al. Metric dimension reduction: A snapshot of the Ribe program , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).
[10] S. Dilworth,et al. Lipschitz-free Spaces on Finite Metric Spaces , 2018, Canadian Journal of Mathematics.
[11] Marek C'uth,et al. Isometric embedding of ℓ₁ into Lipschitz-free spaces and ℓ_{∞} into their duals , 2016, 1604.04131.
[12] P. Wojtaszczyk,et al. On the structure of Lipschitz-free spaces , 2015, 1505.07209.
[13] P. Kaufmann,et al. Characterization of metric spaces whose free space is isometric to $\ell_1$ , 2015, 1502.02719.
[14] M. Ostrovskii. Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces , 2013 .
[15] Alexandre Godard. Tree metrics and their Lipschitz-free spaces , 2009, 0904.3178.
[16] J. A. Bondy,et al. Graph Theory , 2008, Graduate Texts in Mathematics.
[17] L. Kantorovich. On the Translocation of Masses , 2006 .
[18] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[19] J. Bourgain. The metrical interpretation of superreflexivity in banach spaces , 1986 .
[20] R. Arens,et al. On embedding uniform and topological spaces. , 1956 .
[21] R. Mortini,et al. Lipschitz algebras , 2021, Extension Problems and Stable Ranks.
[22] M. Ostrovskii,et al. Isometric copies of l n ∞ and l n 1 in transportation cost spaces on finite metric spaces , 2019 .
[23] G. Godefroy,et al. Spaces of Lipschitz and Hölder functions and their applications , 2016 .
[24] Ells,et al. ON EMBEDDING UNIFORM AND TOPOLOGICAL SPACES , 2012 .
[25] Jane Zundel. MATCHING THEORY , 2011 .
[26] G. Godefroy,et al. Lipschitz-free Banach spaces , 2003 .
[27] M. R. Rao,et al. Combinatorial Optimization , 1992, NATO ASI Series.
[28] Jack Edmonds,et al. Maximum matching and a polyhedron with 0,1-vertices , 1965 .
[29] S. Banach,et al. Théorie des opérations linéaires , 1932 .