Charge Transport in Imidazolium-Based Homo- and Triblock Poly(ionic liquid)s

Ion dynamics in a series of imidazolium-based triblock copolymers (triblock co-PILs) are investigated using broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) and compared to their homopolymer counterparts (homo-PILs). Two calorimetric glass transition temperatures (Tg) are observed corresponding to the charged poly(ionic liquid) (PIL) blocks and noncharged polystyrene (PS) blocks. Varying the counterion from Br– to NTf2– decreases the Tg of the charged block by over 50 °C, thereby increasing the room-temperature ionic dc conductivity by over 6 orders of magnitude. Interestingly, for a given anion, varying the volume fraction of the charged block, from ∼0.5 to ∼0.8, has very minimal effect on the dc ionic conductivity, indicating that the choice of counterion is the key factor influencing charge transport in these systems.

[1]  Wen-long Wang Poly(Ionic Liquid)s , 2020, Encyclopedia of Ionic Liquids.

[2]  A. Meister,et al.  Synthesis and Morphology of Semifluorinated Polymeric Ionic Liquids , 2018, Macromolecules.

[3]  F. Kremer,et al.  Gating effects of conductive polymeric ionic liquids , 2018 .

[4]  R. Kumar,et al.  Polymerized ionic liquids: Effects of counter‐anions on ion conduction and polymerization kinetics , 2018 .

[5]  G. Stein,et al.  Ion Transport and Interfacial Dynamics in Disordered Block Copolymers of Ammonium-Based Polymerized Ionic Liquids , 2018 .

[6]  V. Bocharova,et al.  Effect of Chain Rigidity on the Decoupling of Ion Motion from Segmental Relaxation in Polymerized Ionic Liquids: Ambient and Elevated Pressure Studies , 2017 .

[7]  O. Urakawa,et al.  Polymerized Ionic Liquids: Correlation of Ionic Conductivity with Nanoscale Morphology and Counterion Volume. , 2017, ACS macro letters.

[8]  S. Mogurampelly,et al.  Mechanisms Underlying Ion Transport in Polymerized Ionic Liquids. , 2017, Journal of the American Chemical Society.

[9]  Xi Jiang,et al.  Hydroxide-ion transport and stability of diblock copolymers with a polydiallyldimethyl ammonium hydroxide block , 2017 .

[10]  A. Isloor,et al.  Favorable influence of mPIAM on PSf blend membranes for ion rejection , 2017 .

[11]  Jin Hong Lee,et al.  Hybrid ionogels derived from polycationic polysilsesquioxanes for lithium ion batteries , 2017 .

[12]  E. Kamio,et al.  New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport , 2017 .

[13]  Chan Young Kim,et al.  Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels. , 2017, ACS applied materials & interfaces.

[14]  A. Serghei,et al.  Enhanced Ionic Conductivity of a 1,2,3-Triazolium-Based Poly(siloxane ionic liquid) Homopolymer. , 2016, ACS macro letters.

[15]  T. Lodge,et al.  Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids. , 2016, Accounts of chemical research.

[16]  A. Sokolov,et al.  Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids , 2016 .

[17]  Canhua Zhou,et al.  Formation of Multicompartment Ion Gels by Stepwise Self-Assembly of a Thermoresponsive ABC Triblock Terpolymer in an Ionic Liquid , 2016 .

[18]  T. Lodge,et al.  Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels. , 2016, ACS applied materials & interfaces.

[19]  Robert B. Moore,et al.  Imidazolium-Containing ABA Triblock Copolymers as Electroactive Devices. , 2016, ACS applied materials & interfaces.

[20]  M. Paluch,et al.  Effect of Pressure on Decoupling of Ionic Conductivity from Segmental Dynamics in Polymerized Ionic Liquids , 2015 .

[21]  Y. Marcus Ionic and molar volumes of room temperature ionic liquids , 2015 .

[22]  A. Sokolov,et al.  Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups , 2015 .

[23]  D. Haddleton,et al.  Photoinduced Synthesis of α,ω-Telechelic Sequence-Controlled Multiblock Copolymers , 2015 .

[24]  T. Long,et al.  Influence of Counterion on Thermal, Viscoelastic, and Ion Conductive Properties of Phosphonium Ionenes , 2014 .

[25]  Ran Tao,et al.  Thermophysical Properties of Imidazolium-Based Ionic Liquids: The Effect of Aliphatic versus Aromatic Functionality , 2014 .

[26]  K. Winey,et al.  Well‐Defined Imidazolium ABA Triblock Copolymers as Ionic‐Liquid‐Containing Electroactive Membranes , 2014 .

[27]  J. Sangoro Charge transport and dipolar relaxations in an alkali metal oligoether carboxylate ionic liquid , 2014, Colloid and Polymer Science.

[28]  F. Kremer,et al.  Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. , 2014, Soft matter.

[29]  K. Winey,et al.  Dielectric and Viscoelastic Responses of Imidazolium-Based Ionomers with Different Counterions and Side Chain Lengths , 2014 .

[30]  P. Simon,et al.  Energy applications of ionic liquids , 2014 .

[31]  Moon Jeong Park,et al.  Simple Route for Tuning the Morphology and Conductivity of Polymer Electrolytes: One End Functional Group is Enough. , 2013, ACS macro letters.

[32]  Robert B. Moore,et al.  Comparing Ammonium and Phosphonium Polymerized Ionic Liquids: Thermal Analysis, Conductivity, and Morphology , 2013 .

[33]  M. Antonietti,et al.  Poly(ionic liquid)s: An update , 2013 .

[34]  K. Winey,et al.  Network Structure and Strong Microphase Separation for High Ion Conductivity in Polymerized Ionic Liquid Block Copolymers , 2013 .

[35]  Karen I. Winey,et al.  High Hydroxide Conductivity in Polymerized Ionic Liquid Block Copolymers. , 2013, ACS macro letters.

[36]  Robert B. Moore,et al.  Synthesis and characterization of 4-vinylimidazole ABA triblock copolymers utilizing a difunctional RAFT chain transfer agent , 2013 .

[37]  R. W. Hess,et al.  Ionic Conduction in Nanostructured Membranes Based on Polymerized Protic Ionic Liquids , 2013 .

[38]  Rodger Yuan,et al.  Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes , 2013 .

[39]  Karen I. Winey,et al.  Polymerized Ionic Liquid Block and Random Copolymers: Effect of Weak Microphase Separation on Ion Transport , 2012 .

[40]  T. Long,et al.  Imidazolium sulfonate-containing pentablock copolymer–ionic liquid membranes for electroactive actuators , 2012 .

[41]  T. McIntosh,et al.  From Brittle to Pliant Viscoelastic Materials with Solid State Linear Polyphosphonium - Carboxylate Assemblies. , 2012, Macromolecules.

[42]  Andrew L. Schmitt,et al.  Effect of Nanoscale Morphology on the Conductivity of Polymerized Ionic Liquid Block Copolymers , 2011 .

[43]  R. Colby,et al.  Counterion Dynamics in Polyester-Sulfonate Ionomers with Ionic Liquid Counterions , 2011 .

[44]  M. Antonietti,et al.  Poly(ionic liquid)s: Polymers expanding classical property profiles , 2011 .

[45]  R. Colby,et al.  Counterion Dynamics in Polyurethane-Carboxylate Ionomers with Ionic Liquid Counterions , 2011 .

[46]  Megan L. Hoarfrost,et al.  Ionic Conductivity of Nanostructured Block Copolymer/Ionic Liquid Membranes , 2010 .

[47]  A. Hexemer,et al.  Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order−Disorder and Order−Order Transitions , 2009 .

[48]  J. Virgili Phase Behavior of Polystyrene-block-poly(2-vinylpyridine) Copolymers in a Selective Ionic Liquid Solvent , 2009 .

[49]  Jason E. Bara,et al.  Improving CO2 permeability in polymerized room‐temperature ionic liquid gas separation membranes through the formation of a solid composite with a room‐temperature ionic liquid , 2008 .

[50]  Timothy P. Lodge,et al.  A Unique Platform for Materials Design , 2008, Science.

[51]  D. Gin,et al.  Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes , 2007 .

[52]  Eric D. Wetzel,et al.  Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries , 2007 .

[53]  T. Schrøder,et al.  Computer simulations of the random barrier model , 2002 .

[54]  Jeppe C. Dyre,et al.  The random free-energy barrier model for ac conduction in disordered solids , 1988 .