Dual template strategy to prepare ultralight and high-temperature resistant ceramic nanorod aerogels for efficient thermal insulation

[1]  Junzong Feng,et al.  Carbon Layer Encapsulation Strategy for Designing Multifunctional Core-Shell Nanorod Aerogels as High-Temperature Thermal Superinsulators , 2022, Chemical Engineering Journal.

[2]  Junzong Feng,et al.  Novel silica-modified boehmite aerogels and fiber-reinforced insulation composites with ultra-high thermal stability and low thermal conductivity , 2022, Journal of the European Ceramic Society.

[3]  Weiwei Gao,et al.  A review on elastic graphene aerogels: Design, preparation, and applications , 2022, Journal of Polymer Science.

[4]  X. Duan,et al.  Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions , 2022, Nature.

[5]  B. Ding,et al.  All-Ceramic and Elastic Aerogels with Nanofibrous-Granular Binary Synergistic Structure for Thermal Superinsulation. , 2022, ACS nano.

[6]  Xuning Feng,et al.  Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales , 2022, Materials Today.

[7]  Junzong Feng,et al.  Thermally insulating, fiber-reinforced alumina–silica aerogel composites with ultra-low shrinkage up to 1500 °C , 2021 .

[8]  Tong Lv,et al.  Insulating and Robust Ceramic Nanorod Aerogels with High-Temperature Resistance over 1400 °C. , 2021, ACS applied materials & interfaces.

[9]  Yingde Wang,et al.  Multi-phase SiZrOC nanofibers with outstanding flexibility and stability for thermal insulation up to 1400 °C , 2021 .

[10]  Xiaodong He,et al.  Alumina aerogels with unidirectional channels under different freezing temperatures during freeze casting—Part I: Control and analysis of pore channels , 2020 .

[11]  Sizhao Zhang,et al.  Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol , 2020 .

[12]  Junzong Feng,et al.  A facile method to fabricate monolithic alumina–silica aerogels with high surface areas and good mechanical properties , 2020, Journal of the European Ceramic Society.

[13]  B. Wang,et al.  Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature , 2020 .

[14]  K. Oksman,et al.  Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO2 Capture and Energy Storage , 2020, ACS applied materials & interfaces.

[15]  X. Xi,et al.  Nanofibrous Aerogel Bulk Assembled by Crosslinked SiC/SiOx Core-Shell Nanofibers with Multifunctionality and Temperature-Invariant Hyperelasticity. , 2019, ACS nano.

[16]  B. Dai,et al.  Control of ice crystal growth and its effect on porous structure of chitosan cryogels , 2019, Chemical Engineering Science.

[17]  J. Mizsei,et al.  Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition , 2019, Carbon.

[18]  Ching-ping Wong,et al.  Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template , 2019, Ceramics International.

[19]  Wei Jing,et al.  Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels , 2019, Chemical Engineering Journal.

[20]  H. Fei,et al.  Double-negative-index ceramic aerogels for thermal superinsulation , 2019, Science.

[21]  Yang Wang,et al.  A novel SiC nanowire aerogel consisted of ultra long SiC nanowires , 2019, Materials Research Express.

[22]  B. Ding,et al.  Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity , 2018, Science Advances.

[23]  Hongjie Wang,et al.  Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel. , 2018, ACS nano.

[24]  J. Kong,et al.  Preparation and heat‐insulating properties of biomorphic ZrO2 hollow fibers derived from a cotton template , 2018 .

[25]  J. Kong,et al.  Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template , 2017 .

[26]  K. Libbrecht Physical Dynamics of Ice Crystal Growth , 2017 .

[27]  Xinmei Liu,et al.  Synthesis and characterization of mesoporous Si-modified alumina with high thermal stability , 2017 .

[28]  G. Tang,et al.  Multi-layer graded doping in silica aerogel insulation with temperature gradient , 2016 .

[29]  Xiaojing Wang,et al.  Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites , 2016 .

[30]  Hongchao Wu,et al.  Interface-mediated extremely low thermal conductivity of graphene aerogel , 2016 .

[31]  Xiaodong Wu,et al.  Novel Al2O3–SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol–gel method , 2016 .

[32]  Wei Fan,et al.  Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications , 2015, Materials.

[33]  Xiaodong He,et al.  Facile synthesis of strong alumina–cellulose aerogels by a freeze-drying method , 2015 .

[34]  B. Liu,et al.  Robust, Highly Thermally Stable, Core–Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts , 2014 .

[35]  Jun Shen,et al.  Nanoengineering Super Heat-Resistant, Strong Alumina Aerogels , 2013 .

[36]  Chao Gao,et al.  Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon Aerogels , 2013, Advanced materials.

[37]  Yangyang He,et al.  Theoretical study on thermal conductivities of silica aerogel composite insulating material , 2013 .

[38]  Jie Cai,et al.  Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. , 2012, Angewandte Chemie.

[39]  Dan Li,et al.  Biomimetic superelastic graphene-based cellular monoliths , 2012, Nature Communications.

[40]  Bjørn Petter Jelle,et al.  Traditional, state-of-the-art and future thermal building insulation materials and solutions Prope , 2011 .

[41]  C. Hsueh,et al.  Low thermal conductivity of porous Al2O3 foams for SOFC insulation , 2011 .

[42]  Bing Wang,et al.  Effect of Fiber Diameter on Thermal Conductivity of the Electrospun Carbon Nanofiber Mats , 2011 .

[43]  Jun Shen,et al.  Preparation and characterization of monolithic alumina aerogels , 2011 .

[44]  K. Warrier,et al.  High-Surface-Area Alumina–Silica Nanocatalysts Prepared by a Hybrid Sol–Gel Route Using a Boehmite Precursor , 2010 .

[45]  E. Maire,et al.  Influence of Particle Size on Ice Nucleation and Growth During the Ice‐Templating Process , 2010, 1805.01354.

[46]  S. K. Sadrnezhaad,et al.  Suppression of grain growth in sub-micrometer alumina via two-step sintering method , 2009 .

[47]  S. Bent,et al.  Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. , 2008, Nano letters.

[48]  L. O’Dell,et al.  A 27Al MAS NMR study of a sol–gel produced alumina: Identification of the NMR parameters of the θ-Al2O3 transition alumina phase , 2007 .

[49]  Akio Saito,et al.  Ice crystal growth in supercooled solution , 2002 .

[50]  S. Kim,et al.  Determination of mesopore size of aerogels from thermal conductivity measurements , 2002 .

[51]  Lawrence W. Hrubesh,et al.  Synthesis of high porosity, monolithic alumina aerogels , 2001 .

[52]  H. Chu,et al.  Thermal conductivity of polyurethane foams , 1999 .

[53]  Lawrence W. Hrubesh,et al.  Thermal properties of organic and inorganic aerogels , 1994 .

[54]  S. Kistler,et al.  Coherent Expanded Aerogels and Jellies. , 1931, Nature.

[55]  K. Nakanishi,et al.  Ultralow-Density, Transparent, Superamphiphobic Boehmite Nanofiber Aerogels and Their Alumina Derivatives , 2015 .