Essentially Reductive Hilbert Modules II
暂无分享,去创建一个
[1] Quasi-Free Resolutions Of Hilbert Modules , 2003, math/0304084.
[2] Ronald G. Douglas. Essentially Reductive Hilbert Modules , 2004 .
[3] Guo,et al. Essentially normal Hilbert modules and K-homology II: Quasi-homogeneous Hilbert modules over the two dimensional unit ball , 2008 .
[4] R. G. Douglas,et al. Extensions of C*-algebras and K-homology , 1977 .
[5] William Arveson,et al. p-Summable Commutators in Dimension d , 2003 .
[6] K. Guo. Defect operators for submodules of H[2][d] , 2004 .
[7] L. B. D. Monvel. On the index of Toeplitz operators of several complex variables , 1978 .
[8] Raúl E. Curto,et al. Fredholm and invertible -tuples of operators. The deformation problem , 1981 .
[9] Ronald G. Douglas,et al. Hilbert Modules over Function Algebras , 1989 .
[10] M. Lesch,et al. Analysis, Geometry and topology of elliptic operators , 2006 .
[11] William Arveson,et al. Quotients of standard Hilbert modules , 2005, math/0502388.
[12] Kunyu Guo,et al. Essentially normal Hilbert modules and K-homology , 2008 .
[13] B. M. Fulk. MATH , 1992 .
[14] Siqi Fu,et al. Compactness in the ə̄-Neumann problem , 2001 .
[15] The generalized Berezin transform and commutator ideals , 2004, math/0401442.
[16] R. Range. Holomorphic Functions and Integral Representations in Several Complex Variables , 1998 .
[17] Steven G. Krantz,et al. Several Complex Variables and Complex Geometry, Part 3 , 1991 .
[18] The Dirac Operator of a Commuting d-Tuple , 2000, math/0005285.
[19] THE BERGER-SHAW THEOREM IN THE HARDY MODULE OVER THE BIDISK , 1999 .
[20] A new kind of index theorem , 2005, math/0507542.
[21] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .