Lagrangian methods for ballistic impact simulations

This thesis explores various Lagrangian methods for simulating ballistic impact with the ultimate goal of finding a universal, robust and scalable computational framework to assist in the design of armor systems. An overview is provided of existing Lagrangian strategies including particle methods, meshless methods, and the peridynamic approach. We review the continuum formulation of mechanics and its discretization using finite elements. A rigid body contact algorithm for explicit dynamic finite elements is presented and used to model a rigid sphere impacting a confined alumina tile. The constitutive model for the alumina is provided by the Deshpande-Evans ceramic damage model. These simulations were shown to capture experimentally observed radial crack patterns. An adaptive remeshing strategy using finite elements is then explored and applied, with limited success, to the problem of predicting the transition from dwell to penetration for long-rod penetrators impacting confined ceramic targets at high velocities. Motivated by the difficulties of mesh-based Lagrangian approaches for modeling impact, an alternative Lagrangian approach is investigated which uses established constitutive relations within a particle-based computational framework. The resulting algorithm is based on a discretization of the peridynamic formulation of continuum mechanics. A validating benchmark example using a Taylor impact test is shown and compared to previous results from the literature. Further numerical examples involving ballistic impact and the crushing of an aluminum sandwich structures provide further demonstration of the method's potential for armor applications. Thesis Supervisor: Radl A. Radovitzky Title: Associate Professor of Aeronautics and Astronautics Thesis Reader: Tomasz Wierzbicki Title: Professor of Mechanical Engineering

[1]  Matthew West,et al.  Decomposition contact response (DCR) for explicit finite element dynamics , 2005, International Journal for Numerical Methods in Engineering.

[2]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[3]  Y. Y. Zhu,et al.  Unified and mixed formulation of the 4‐node quadrilateral elements by assumed strain method: Application to thermomechanical problems , 1995 .

[4]  Eric P. Fahrenthold,et al.  A hybrid particle-finite element method for hypervelocity impact simulation , 1999 .

[5]  Adrian J. Lew,et al.  An artificial-viscosity method for the lagrangian analysis of shocks in solids with strength on unstructured, arbitrary-order tetrahedral meshes , 2001 .

[6]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[7]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[8]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[9]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[10]  G. R. Johnson,et al.  Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures , 2003 .

[11]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[12]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[13]  Bo Li,et al.  Optimal transportation meshfree approximation schemes for fluid and plastic flows , 2010 .

[14]  Xu Han,et al.  CLASSIC TAYLOR-BAR IMPACT TEST REVISITED USING 3D SPH , 2006 .

[15]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[16]  Satya N. Atluri,et al.  The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in High-Speed Impact, Penetration and Perforation Problems , 2006 .

[17]  M. Ortiz,et al.  A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids , 2006 .

[18]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[19]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[20]  S. Silling,et al.  Viscoplasticity using peridynamics , 2010 .

[21]  Eric P. Fahrenthold,et al.  Orbital debris impact simulation using a parallel hybrid particle-element code , 2001 .

[22]  J. Marsden,et al.  Time‐discretized variational formulation of non‐smooth frictional contact , 2002 .

[23]  A. Ockewitz,et al.  Damage Modelling of Automobile Components of Aluminium Materials under Crash Loading , 2006 .

[24]  K. T. Ramesh,et al.  An elastic–visco-plastic analysis of ductile expanding ring , 2006 .

[25]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[26]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[27]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[28]  G. R. Johnson,et al.  Conversion of 3D distorted elements into meshless particles during dynamic deformation , 2003 .

[29]  Florin Bobaru,et al.  The peridynamic formulation for transient heat conduction , 2010 .

[30]  L. Anand Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures , 1982 .

[31]  B. Lundberg,et al.  Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials , 2005 .

[32]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[33]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[34]  Jean-François Molinari,et al.  Atomistic based continuum investigation of plastic deformation in nanocrystalline copper , 2006 .

[35]  Vikram Deshpande,et al.  Inelastic deformation and energy dissipation in ceramics: A mechanism-based constitutive model , 2008 .

[36]  M. Ortiz,et al.  Tetrahedral mesh generation based on node insertion in crystal lattice arrangements and advancing-front-Delaunay triangulation , 2000 .

[37]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[38]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[39]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[40]  Wm G Hoover,et al.  Smooth-particle applied mechanics: Conservation of angular momentum with tensile stability and velocity averaging. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[42]  S. Silling,et al.  Peridynamic modeling of membranes and fibers , 2004 .

[43]  J. M. McGlaun,et al.  CTH: A three-dimensional shock wave physics code , 1990 .

[44]  David J. Benson,et al.  Sliding interfaces with contact-impact in large-scale Lagrangian computations , 1985 .

[45]  Raul Radovitzky,et al.  Advances in Cohesive Zone Modeling of Dynamic Fracture , 2009 .

[46]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[47]  E. Emmrich,et al.  On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity , 2007 .

[48]  Stewart Andrew Silling,et al.  Crack nucleation in a peridynamic solid , 2010 .

[49]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[50]  A. Evans,et al.  Constitutive model for predicting dynamic interactions between soil ejecta and structural panels , 2009 .

[51]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[52]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[53]  A. Cemal Eringen,et al.  Linear theory of nonlocal elasticity and dispersion of plane waves , 1972 .

[54]  Michael Ortiz,et al.  Error estimation and adaptive meshing in strongly nonlinear dynamic problems , 1999 .

[55]  G. Ravichandran,et al.  A computational study of the influence of thermal softening on ballistic penetration in metals , 2001 .

[56]  A. Evans,et al.  The Influence of Material Properties and Confinement on the Dynamic Penetration of Alumina by Hard Spheres , 2009 .

[57]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[58]  Y. Y. Zhang,et al.  Impact simulation using simplified meshless method , 2009 .

[59]  J. R. Bristow Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked metals , 1960 .

[60]  H. Wadley Multifunctional periodic cellular metals , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Steven J. Plimpton,et al.  Implementing peridynamics within a molecular dynamics code , 2007, Comput. Phys. Commun..

[62]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[63]  Kamran Behdinan,et al.  Numerical simulation of normal and oblique ballistic impact on ceramic composite armours , 2004 .

[64]  Z. Zhao,et al.  LAGRANGIAN SIMULATION OF PENETRATION ENVIRONMENTS VIA MESH HEALING AND ADAPTIVE OPTIMIZATION S , 2006 .

[65]  G. R. Johnson,et al.  SPH for high velocity impact computations , 1996 .

[66]  G. R. Johnson,et al.  Response of silicon carbide to high velocity impact , 2002 .

[67]  Olaf Weckner,et al.  The effect of long-range forces on the dynamics of a bar , 2005 .

[68]  P. Geubelle,et al.  Mesoscale analysis of dynamic fragmentation of ceramics under tension , 2005 .

[69]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[70]  S. Silling,et al.  Green’s functions in non-local three-dimensional linear elasticity , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  K. Bathe,et al.  The method of finite spheres , 2000 .

[72]  P. Geubelle,et al.  Mesoscale Modeling of Dynamic Fracture of Ceramic Materials , 2004 .

[73]  Michael F. Ashby,et al.  The damage mechanics of brittle solids in compression , 1990 .

[74]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[75]  F. Hörz,et al.  Large meteorite impacts III , 2005 .

[76]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[77]  R. Lehoucq,et al.  Convergence of Peridynamics to Classical Elasticity Theory , 2008 .

[78]  Ted Belytschko,et al.  Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction , 2007 .

[79]  C. A. Wingate,et al.  Impact modeling with smooth particle hydrodynamics , 1992 .

[80]  Bengt Lundberg,et al.  Impact of metallic projectiles on ceramic targets : transition between interface defeat and penetration , 2000 .

[81]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[82]  Kaushik Bhattacharya,et al.  Kinetics of phase transformations in the peridynamic formulation of continuum mechanics , 2006 .

[83]  Horacio Dante Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples , 2003 .

[84]  R. Taylor,et al.  Lagrange constraints for transient finite element surface contact , 1991 .

[85]  S. Silling,et al.  Deformation of a Peridynamic Bar , 2003 .

[86]  Douglas T. Queheillalt,et al.  DEFORMATION AND FRACTURE MODES OF SANDWICH STRUCTURES SUBJECTED TO UNDERWATER IMPULSIVE LOADS , 2007 .

[87]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[88]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[89]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[90]  Horacio Dante Espinosa,et al.  Grain level analysis of crack initiation and propagation in brittle materials , 2001 .

[91]  L. Taylor,et al.  Modeling of impact problems using an h-adaptive, explicit Lagrangian finite element method in three dimensions , 2003 .

[92]  M. Ortiz,et al.  Adaptive Lagrangian modelling of ballistic penetration of metallic targets , 1997 .