Examination of Different Control Strategies of Heavy-Vehicle Performance

Heavy vehicles play an economically important role in the transportation process, and their numbers have been increasing for several decades. The active safety of the highway system is an important consideration in the design of a heavy vehicle combination. In this paper, the handling characteristics of a 5-axle tractor-semitrailer is examined and used to test for the desired features of the vehicle's handling and stability. Using these results the optimal control criterion is derived for the vehicle. Four different control strategies are examined by using the Linear Quadratic Regulator (LQR) approach. These are, active steering of the rear wheels of the tractor; active steering of the wheels of the trailer; active torque control in the fifth-wheel joint; and active yaw torque acting on the tractor. These controllers are designed and examined using a simplified linear vehicle model. In addition to discussing the above-mentioned approaches, this paper discusses a method of modifying the slip angles at the tractor's rear (driven) axles, however the yaw torque at the tractor cg also can be controlled using what is called unilateral braking. As well, the replacement of the active torque control at the fifth wheel joint, by a control strategy based on the usage of controllable dampers at the fifth-wheel joint, will also be examined. In this case, a nonlinear mathematical model of the vehicle is used and a modified control strategy called the RLQR/H∞ approach is used to ensure the vehicle's performance in the presence of parametric uncertainties. The examination of these control strategies is conducted by using a sophisticated non-linear vehicle model, and the influence of these control strategies on the vehicle's directional and roll stability during severe path-follow lane-change manoeuvre is discussed.