Bis[2]catenanes and a bis[2]rotaxane–Model Compounds for Polymers with Mechanically Interlocked Components†

The self-assembly of three bis[2]catenanes and a bis[2]rotaxane, by two complementary strategies, is reported. A synthetic route to derivatives of bis-para-phenylene[34]crown-10 (BPP34C10) and 1,5-naphtho-para-phenylene[36]-crown-10 (1/5NPP36C10) containing a fused five-membered ring with a secondary amine function is described. These intermediate N-allylimido macrocyclic polyethers undergo template-directed reactions with 1,1′-[1,4-phenylenebis-(methylene)]bis-4,4′-bipyridinium bis-(hexafluorophosphate) and 1,4-bis(bromo-methyl)benzene to produce [2]catenanes containing an N-allyl functionality. The N-allylimido macrocyclic polyethers have also been reduced and deprotected to afford macrocycles possessing a free NH group, which are then linked through a 4,4′-biphenyldicarbonyl spacer to produce bis(crown ether)s, in which each crown ether moiety has two recognition sites. These ditopic BPP34C10 and 1/5NPP36C10 derivatives are capable of sustaining self-assembly reactions at both recognition sites to yield bis[2]catenanes. The self-assembly of a complementary bis[2]catenane, in which two tetracationic cyclophanes are linked together with a flexible hexyl chain, has also been achieved by treating 1,1′-[1,4-phenylenebis(methylene)]bis-4,4′-bipyridinium bis-(hexafluorophosphate) with a compound containing two linked 1,4-bis(bromomethyl)benzene units in the presence of BPP34C10. Replacing BPP34C10 with a dumbbell-shaped compound containing a linear polyether unit intercepted by a naphthalene residue and terminated by two bulky adamantoyl groups has led to the self-assembly of a bis[2]rotaxane. The X-ray crystal structures of one of the catenanes and its associated crown ether component are reported, together with solution state dynamic 1H NMR spectroscopic studies, showing that there is substantial degree of order characterizing the molecular structure of the catenanes.

[1]  J. F. Stoddart,et al.  Kinetic Selection in the Template‐Directed Self‐Assembly of [2]Catenanes , 1995 .

[2]  J. F. Stoddart,et al.  The Self-Assembly of Redox-Active and Photo-Active Catenanes and Rotaxanes , 1995 .

[3]  J. F. Stoddart,et al.  Macrocyclic polyethers incorporating resorcinol residues as templates for cyclobis(paraquat-p-phenylene) in the self-assembly of [2]catenanes , 1995 .

[4]  David J. Williams,et al.  Controlling Translational Isomerism in [2]Catenanes† , 1995 .

[5]  R. A. Bissell,et al.  Synthesis and Electrochemical Properties of Redox-Active [2]Rotaxanes Based on the Inclusion Complexation of 1,4-Phenylenediamine and Benzidine by Cyclobis(paraquat-p-phenylene) , 1995 .

[6]  A. Harriman,et al.  DYNAMICS OF CHARGE TRANSFER AND RECOMBINATION IN A COVALENTLY-LINKED, FACE-TO-FACE ELECTRON DONOR-ACCEPTOR COMPLEX , 1994 .

[7]  T. Swager,et al.  CONDUCTING PSEUDOPOLYROTAXANES : A CHEMORESISTIVE RESPONSE VIA MOLECULAR RECOGNITION , 1994 .

[8]  David J. Williams,et al.  From Solid-State Structures and Superstructures to Self-Assembly Processes , 1994 .

[9]  Akira Harada,et al.  Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol) , 1994, Nature.

[10]  M. Johnston,et al.  Self-Assembling Porphyrin [2]-Catenanes , 1994 .

[11]  G. Wenz Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units , 1994 .

[12]  C. Wilcox,et al.  MOLECULAR TORSION BALANCE FOR WEAK MOLECULAR RECOGNITION FORCES. EFFECTS OF TILTED-T EDGE-TO-FACE AROMATIC INTERACTIONS ON CONFORMATIONAL SELECTION AND SOLID-STATE STRUCTURE , 1994 .

[13]  L. McGown,et al.  Molecular Nanotube Aggregates of β- and γ-Cyclodextrins Linked by Diphenylhexatrienes , 1994, Science.

[14]  A. Harada,et al.  PREPARATION AND CHARACTERIZATION OF A POLYROTAXANE CONSISTING OF MONODISPERSE POLY(ETHYLENE GLYCOL) AND ALPHA -CYCLODEXTRINS , 1994 .

[15]  Anthony Harriman,et al.  Photoactive [2]rotaxanes formed by multiple π-stacking , 1994 .

[16]  J. F. Stoddart,et al.  The two-step self-assembly of [4]- and [5]catenanes , 1994 .

[17]  P. Hodge,et al.  Cyclic polyesters: 3. Attempts to prepare catenated polymers using polymer-supported reagents , 1994 .

[18]  Douglas Philp,et al.  The Control of Translational Isomerism in Catenated Structures. , 1994 .

[19]  A. Harada,et al.  Preparation and characterization of polyrotaxanes containing many threaded .alpha.-cyclodextrins , 1993 .

[20]  E. Logemann Real molecules as models for mathematical chemistry , 1993 .

[21]  A. Cheetham,et al.  Conformational studies of dihydrotetraphenylmethanes. 2. X-ray crystallographic and solution proton NMR studies of cis-1,4-dihydro-4-tritylbiphenyl and its 4'-bromo derivative: conformational control by an intramolecular edge-to-face aromatic interaction , 1993 .

[22]  A. Harada,et al.  Preparation and properties of inclusion complexes of polyethylene glycol with .alpha.-cyclodextrin , 1993 .

[23]  Anthony Harriman,et al.  A Light‐Induced Molecular Shuttle Based on a [2]Rotaxane‐Derived Triad , 1993 .

[24]  David J. Williams,et al.  Isomeric Self‐Assembling [2]Catenanes , 1993 .

[25]  Jean-Pierre Sauvage,et al.  From Classical Chirality to Topologically Chiral Catenands and Knots , 1993 .

[26]  David C. Bradley,et al.  Will Future Computers Be All Wet? , 1993, Science.

[27]  J. F. Stoddart,et al.  Self-assembly and macromolecular design , 1993 .

[28]  H. Gibson,et al.  Synthesis and some properties of polyrotaxanes comprised of polyurethane backbone and crown ethers , 1992 .

[29]  Akira Harada,et al.  The molecular necklace: a rotaxane containing many threaded α-cyclodextrins , 1992, Nature.

[30]  G. Wenz,et al.  Threading Cyclodextrin Rings on Polymer Chains , 1992 .

[31]  P. Ball,et al.  Science at the atomic scale , 1992, Nature.

[32]  David J. Williams,et al.  The template-directed synthesis of a [2]rotaxane , 1991 .

[33]  Christopher L. Brown,et al.  Molecular Trains: The Self‐Assembly and Dynamic Properties of Two New Catenaries , 1991 .

[34]  Christopher L. Brown,et al.  Self-Assembling [3]Catenanes† , 1991 .

[35]  J. F. Stoddart,et al.  Molekulare Eisenbahn: Selbstassoziation und dynamische Eigenschaften von zwei neuen Catenanen , 1991 .

[36]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[37]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[38]  Joel S. Miller,et al.  Molecular materials II Part A. Molecular electronics , 1990 .

[39]  William L. Jorgensen,et al.  Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene , 1990 .

[40]  Yu Liu,et al.  Convenient and efficient tosylation of oligoethylene glycols and the related alcohols in tetrahydrofuran-water in the presence of sodium hydroxide , 1990 .

[41]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[42]  S. Chemburkar,et al.  (R,R)-1,3-Dibenzylisoindoline: a new C2-symmetric secondary amine, by stereoselective and regioselective .alpha.,.alpha.'-dialkylation of isoindoline, and an improved procedure for the preparation of isoindoline , 1988 .

[43]  A. Aviram Molecules for memory, logic and amplification , 1988 .

[44]  P. Gramain,et al.  Synthesis and tacticity characterization of a novel series of liquid crystalline side chain polymers with oligo(ethylene oxide) spacers , 1987 .

[45]  G. Schill,et al.  Massenspektrometrische Untersuchungen einiger Catenane und Makrocyclen , 1977 .

[46]  D. Graiver,et al.  Studies on the formation of topological isomers by statistical methods , 1976 .

[47]  E. Corey,et al.  Selective cleavage of allyl ethers under mild conditions by transition metal reagents , 1973 .

[48]  P. Derst,et al.  Über den thermischen Abbau des polymeren Phosphornitrilchlorids , 1959 .

[49]  H. Mark,et al.  Zur Struktur der Polysiloxene. I , 1953 .

[50]  J. F. Stoddart,et al.  Advantages of the Rotaxane Framework for the Construction of Switchable Molecular Devices , 1995 .

[51]  H. Gibson,et al.  Synthesis and Preliminary Characterization of Some Polyester Rotaxanes , 1995 .

[52]  J. F. Stoddart,et al.  Towards Molecular and Supramolecular Devices , 1995 .

[53]  Christopher L. Brown,et al.  Molecular Meccano. 2. Self-Assembly of [n]Catenanes , 1995 .

[54]  J. F. Stoddart,et al.  Towards the self‐assembly of polyrotaxanes , 1994 .

[55]  H. Gibson,et al.  Polyrotaxanes based on polyurethane backbones and crown ether cyclics. 1. Synthesis , 1994 .

[56]  H. Gibson,et al.  Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials , 1994 .

[57]  K E Drexler,et al.  Molecular nanomachines: physical principles and implementation strategies. , 1994, Annual review of biophysics and biomolecular structure.

[58]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[59]  Y. Lipatov,et al.  Polycatenanes based on diisocyanates. A new class of polymer alloys , 1993 .

[60]  J. F. Stoddart,et al.  Novel rotaxanes based on the inclusion complexation of biphenyl guests by cyclobis (paraquat-p-phenylene) , 1993 .

[61]  H. Gibson,et al.  Polyrotaxanes: Molecular composites derived by physical linkage of cyclic and linear species , 1993 .

[62]  J. F. Stoddart,et al.  Molecular and Supramolecular Self-Assembly Processes , 1993 .

[63]  J. F. Stoddart,et al.  A new approach to controlling catenated structures , 1993 .

[64]  Christopher L. Brown,et al.  The Mechanisms of Making Molecules to Order , 1992 .

[65]  K. Dušek,et al.  Synthesis and Structure of Macromolecular Topological Compounds , 1989 .

[66]  G. Schill,et al.  Rotaxan‐Verbindungen, III. Synthese eines Rotaxans mit Triphenylmethyl‐Sperrgruppen und massenspektrometrische Untersuchungen , 1973 .

[67]  I. Sutherland The Investigation of the Kinetics of Conformational Changes by Nuclear Magnetic Resonance Spectroscopy , 1972 .

[68]  G. Schill,et al.  Die gezielte synthese von catena-verbindungen—IX , 1967 .

[69]  D. D. Perrin,et al.  Purification of Laboratory Chemicals , 2022 .

[70]  J. Thiele,et al.  Ueber die Addition von Blausäure an Chinon , 1900 .