ON THE GROBMAN-HARTMAN THEOREM IN α-HÖLDER CLASS FOR BANACH SPACES

We consider a hyperbolic diffeomorphism in a Banach space with a hyperbolic fixed point 0 and a linear part Λ. We define σ(Λ) ∈ (0, 1], and prove that for any α < σ(Λ) the diffeomorphism admits local α-Hölder linearization.