Spatio-angular order in populations of self-aligning objects: formation of oriented patches

[1]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[2]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[3]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[4]  R. Zwanzig First-Order Phase Transition in a Gas of Long Thin Rods , 1963 .

[5]  R. Bellman,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  C. H. WADDINGTON,et al.  Towards a Theoretical Biology , 1968, Nature.

[8]  S. Chandrasekhar,et al.  Theory of Melting of Molecular Crystals: The Liquid Crystalline Phase , 1970 .

[9]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[10]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[11]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[12]  Donald A. Dewsbury,et al.  In defense of animals , 1979 .

[13]  N. Swindale A model for the formation of ocular dominance stripes , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  L. C. Katz,et al.  Structure and mechanisms of schooling intadpoles of the clawed frog, Xenopus laevis , 1981, Animal Behaviour.

[15]  N. Swindale,et al.  A model for the formation of orientation columns , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[17]  Modelling dynamic phenomena in molecular and cellular biology , 1986 .

[18]  G. Oster,et al.  A MODEL FOR SHELL PATTERNS BASED ON NEURAL ACTIVITY , 1986 .

[19]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[20]  D. O'Brien Analysis of the internal arrangement of individuals within crustacean aggregations (Euphausiacea, Mysidacea) , 1989 .

[21]  G. Bard Ermentrout,et al.  Models for branching networks in two dimensions , 1989 .

[22]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[23]  G. Bard Ermentrout,et al.  Models for contact-mediated pattern formation: cells that form parallel arrays , 1990, Journal of mathematical biology.

[24]  J. Tabony,et al.  Spatial structures in microtubular solutions requiring a sustained energy source , 1990, Nature.

[25]  S. Strogatz,et al.  Stability of incoherence in a population of coupled oscillators , 1991 .

[26]  F. Greco,et al.  Rodlike Molecule Dynamics. The Tumbling Regime , 1992 .

[27]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[28]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[29]  Claude Brezinski,et al.  A survey of matrix theory and matrix inequalities , 1993 .

[30]  Steven H. Strogatz,et al.  Norbert Wiener’s Brain Waves , 1994 .

[31]  L Edelstein-Keshet,et al.  Modelling the dynamics of F-actin in the cell. , 1994, Bulletin of mathematical biology.

[32]  Leah Edelstein-Keshet,et al.  Selecting a common direction , 1995 .

[33]  Leah Edelstein-Keshet,et al.  Selecting a common direction , 1996 .

[34]  G B Ermentrout,et al.  Selecting a common direction. II. Peak-like solutions representing total alignment of cell clusters. , 1996, Journal of mathematical biology.