Transcription factor induction of vascular blood stem cell niches in vivo

The hematopoietic niche is a supportive microenvironment comprised of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses, we define a conserved gene expression signature and cis-regulatory landscape unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code involving members of the Ets, Sox and Nuclear Hormone Receptor families that is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.

[1]  T. Schroeder,et al.  GPR182 is an endothelium-specific atypical chemokine receptor that maintains hematopoietic stem cell homeostasis , 2021, Proceedings of the National Academy of Sciences.

[2]  J. Han,et al.  A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish , 2021, Proceedings of the National Academy of Sciences.

[3]  S. Rafii,et al.  Molecular determinants of nephron vascular specialization in the kidney , 2019, Nature Communications.

[4]  E. Fuchs,et al.  Stem cell–driven lymphatic remodeling coordinates tissue regeneration , 2019, Science.

[5]  Monika S. Kowalczyk,et al.  A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia , 2019, Cell.

[6]  R. Satija,et al.  The bone marrow microenvironment at single-cell resolution , 2019, Nature.

[7]  J. Han,et al.  A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. , 2019, Cell reports.

[8]  Avi Ma’ayan,et al.  Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells , 2019, Nature Cell Biology.

[9]  Dianqing Wu,et al.  VCAM-1+ macrophages guide the homing of HSPCs to a vascular niche , 2018, Nature.

[10]  Samuel E. Zimmerman,et al.  Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow , 2018, Nature Communications.

[11]  P. Frenette,et al.  Niches for Hematopoietic Stem Cells and Their Progeny. , 2018, Immunity.

[12]  A. Kros,et al.  Directing Nanoparticle Biodistribution through Evasion and Exploitation of Stab2-Dependent Nanoparticle Uptake , 2018, ACS nano.

[13]  McKenzie L. Shaw,et al.  Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing , 2017, The Journal of experimental medicine.

[14]  Feng Liu,et al.  The Vascular Niche Regulates Hematopoietic Stem and Progenitor Cell Lodgment and Expansion via klf6a-ccl25b. , 2017, Developmental cell.

[15]  L. Zon,et al.  Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment , 2017, Journal of Molecular Medicine.

[16]  L. Zon,et al.  Distinct Roles for Matrix Metalloproteinases 2 and 9 in Embryonic Hematopoietic Stem Cell Emergence, Migration, and Niche Colonization , 2017, Stem cell reports.

[17]  L. Zon,et al.  CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment , 2017, The Journal of experimental medicine.

[18]  Allon M. Klein,et al.  Single-cell barcoding and sequencing using droplet microfluidics , 2016, Nature Protocols.

[19]  R. Fish,et al.  tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. , 2016, Blood.

[20]  Charles P. Lin,et al.  Distinct bone marrow blood vessels differentially regulate hematopoiesis , 2016, Nature.

[21]  A. Bergman,et al.  Fetal liver hematopoietic stem cell niches associate with portal vessels , 2016, Science.

[22]  N. Trede,et al.  NACA deficiency reveals the crucial role of somite-derived stromal cells in haematopoietic niche formation , 2015, Nature Communications.

[23]  L. Zon,et al.  Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche , 2015, Cell.

[24]  Nana Shimizu,et al.  ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells , 2014, Proceedings of the National Academy of Sciences.

[25]  A. Oudenaarden,et al.  Genome-wide RNA Tomography in the Zebrafish Embryo , 2014, Cell.

[26]  Hsueh-Wei Chang,et al.  Nuclear Receptor Subfamily 2 Group F Member 1a (nr2f1a) Is Required for Vascular Development in Zebrafish , 2014, PloS one.

[27]  Richard J. Poole,et al.  SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish. , 2014, Developmental biology.

[28]  A. Bergman,et al.  Arteriolar niches maintain haematopoietic stem cell quiescence , 2013, Nature.

[29]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[30]  Shuo Lin,et al.  Transdifferentiation of Fast Skeletal Muscle Into Functional Endothelium in Vivo by Transcription Factor Etv2 , 2013, PLoS biology.

[31]  S. Morrison,et al.  Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches , 2013, Nature.

[32]  D. Link,et al.  CXCL12 Production by Early Mesenchymal Progenitors is Required for Hematopoietic Stem Cell Maintenance , 2012, Nature.

[33]  Olivier Elemento,et al.  Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFβ Suppression , 2012, Cell.

[34]  J. Lévesque,et al.  Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance , 2012, Nature Medicine.

[35]  M. Schmid,et al.  The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element , 2012, Development.

[36]  P. Madeddu,et al.  Bone marrow microenvironment: a newly recognized target for diabetes-induced cellular damage. , 2012, Endocrine, metabolic & immune disorders drug targets.

[37]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[38]  Lei Ding,et al.  Endothelial and perivascular cells maintain haematopoietic stem cells , 2011, Nature.

[39]  L. Zon,et al.  Stromal cell-derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation. , 2011, Blood.

[40]  A. Luttun,et al.  Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis. , 2011, Biochemical and biophysical research communications.

[41]  J. Hao,et al.  Distinct Signaling Pathways Regulate Sprouting Angiogenesis from the Dorsal Aorta and Axial Vein , 2011, Nature Cell Biology.

[42]  A. Andrianopoulos,et al.  mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. , 2011, Blood.

[43]  L. Zon,et al.  Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish , 2011, Development.

[44]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[45]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[46]  Ian A. White,et al.  Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. , 2010, Cell stem cell.

[47]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[48]  Zev Rosenwaks,et al.  Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. , 2009, Cell stem cell.

[49]  A. Visel,et al.  Combinatorial Regulation of Endothelial Gene Expression by Ets and Forkhead Transcription Factors , 2008, Cell.

[50]  I. Weissman,et al.  Endochondral ossification is required for hematopoietic stem cell niche formation , 2008, Nature.

[51]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[52]  W. Heideman,et al.  Comparative genomics identifies genes mediating cardiotoxicity in the embryonic zebrafish heart. , 2008, Physiological genomics.

[53]  Guson Kang,et al.  Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. , 2008, Genes & development.

[54]  E. Dejana,et al.  Sox18 and Sox7 play redundant roles in vascular development. , 2008, Blood.

[55]  Seung-Yoon Park,et al.  Stabilin‐2 is involved in lymphocyte adhesion to the hepatic sinusoidal endothelium via the interaction with αMβ2 integrin , 2007 .

[56]  B. Sacchetti,et al.  Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment , 2007, Cell.

[57]  T. Nagasawa,et al.  Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. , 2006, Immunity.

[58]  K. Kissa,et al.  Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. , 2006, Immunity.

[59]  Shuo Lin,et al.  Ets1-Related Protein Is a Key Regulator of Vasculogenesis in Zebrafish , 2005, PLoS biology.

[60]  B. Paw,et al.  Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. , 2005, Blood.

[61]  S. Morrison,et al.  Supplemental Experimental Procedures , 2022 .

[62]  J. Abkowitz,et al.  Mobilization as a preparative regimen for hematopoietic stem cell transplantation. , 2004, Blood.

[63]  Wyeth W. Wasserman,et al.  ConSite: web-based prediction of regulatory elements using cross-species comparison , 2004, Nucleic Acids Res..

[64]  Zhiyuan Gong,et al.  Recapitulation of fast skeletal muscle development in zebrafish by transgenic expression of GFP under the mylz2 promoter , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[65]  Shuo Lin,et al.  Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[66]  P. Buffler,et al.  Competing interests , 2003, Nature biotechnology.

[67]  S. Jalkanen,et al.  The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels , 2003, European journal of immunology.

[68]  S. Rafii,et al.  Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand , 2002, Cell.

[69]  S. Jalkanen,et al.  Mannose Receptor Is a Novel Ligand for L-Selectin and Mediates Lymphocyte Binding to Lymphatic Endothelium , 2001, The Journal of experimental medicine.

[70]  Z. Lele,et al.  Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. , 2000, Experimental cell research.

[71]  Richard O Hynes,et al.  Susceptibility to Infection and Altered Hematopoiesis in Mice Deficient in Both P- and E-Selectins , 1996, Cell.

[72]  B. Thisse,et al.  High-resolution in situ hybridization to whole-mount zebrafish embryos , 2007, Nature Protocols.

[73]  杉山 立樹 Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches , 2007 .

[74]  J. Townsend,et al.  NIH Public Access Author Manuscript , 2006 .

[75]  S. Rafii,et al.  Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis , 2004, Nature Medicine.

[76]  A. Zapata,et al.  Ultrastructural study of the teleost fish kidney. , 1979, Developmental and comparative immunology.

[77]  L. Zon,et al.  Hematopoiesis: An Evolving Paradigm for Stem Cell Biology , 2008, Cell.

[78]  Chang H. Kim Dovepress Open Access to Scientific and Medical Research Open Access Full Text Article Homeostatic and Pathogenic Extramedullary Hematopoiesis , 2022 .

[79]  the vascular niche , 2022 .