The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis

We propose the minimal, lepton-number conserving, SU(3)c × SU(2)L × U(1)Y gauge-singlet, or phantom, extension of the Standard Model. The extension is natural in the sense that all couplings are of (1) or forbidden due to a phantom sector global U(1)D symmetry, and basically imitates the standard Majorana see-saw mechanism. Spontaneous breaking of the U(1)D symmetry triggers consistent electroweak gauge symmetry breaking only if it occurs at a scale compatible with small Dirac neutrino masses and baryogenesis through Dirac leptogenesis. Dirac leptogenesis proceeds through the usual out-of-equilibrium decay scenario, leading to left and right-handed neutrino asymmetries that do not fully equilibrate after they are produced. The model contains two physical Higgs bosons and a massless Goldstone boson. The existence of the Goldstone boson suppresses the Higgs to bb branching ratio and instead the Higgs bosons will mainly decay to invisible Goldstone and/or to visible vector boson pairs. In a representative scenario, we estimate that with 30 fb−1 integrated luminosity, the LHC could discover this invisibly decaying Higgs, with mass ~ 120 GeV. At the same time a significantly heavier, partner Higgs boson with mass ~ 210 GeV could be found through its vector boson decays. Electroweak constraints as well as astrophysical and cosmological implications are analysed and discussed.

[1]  Andrej Dmitrievich Sakharov,et al.  SPECIAL ISSUE: Violation of CP in variance, C asymmetry, and baryon asymmetry of the universe , 1991 .

[2]  Electroweak-scale resonant leptogenesis , 2005, hep-ph/0506107.

[3]  W. Keung,et al.  Majoron emission by neutrinos , 1982 .

[4]  D. Britton,et al.  Measurement of the $\pi^{+} \to e^{+}$ neutrino branching ratio , 1994 .

[5]  V. Kuzmin,et al.  On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe , 1985 .

[6]  Reid,et al.  Detecting invisible Higgs bosons at the CERN Large Hadron Collider. , 1994, Physical review. D, Particles and fields.

[7]  Cosmology of neutrinos and extra-light particles after WMAP3 , 2006, astro-ph/0607086.

[8]  B. Fields,et al.  Big-Bang nucleosynthesis (PDG mini-review) , 2006 .

[9]  Michael S. Turner,et al.  The Early Universe , 1990 .

[10]  R. Mohapatra,et al.  Spontaneously broken lepton number and cosmological constraints on the neutrino-mass spectrum , 1980 .

[11]  S. Glashow,et al.  Weak Interactions with Lepton-Hadron Symmetry , 1970 .

[12]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[13]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .

[14]  Neutrino masses and cosmic radiation density: combined analysis , 2006, astro-ph/0607101.

[15]  Brian Fields,et al.  Big-Bang nucleosynthesis (2006 Particle Data Group mini-review) , 2006, astro-ph/0601514.

[16]  Rindani,et al.  Majoron models and the Higgs boson search. , 1992, Physical review letters.

[17]  Search for `invisible' Higgs signals at LHC via associated production with gauge bosons , 2003, hep-ph/0304137.

[18]  M. Yoshimura Unified gauge theories and the baryon number of the universe , 1978 .

[19]  P. Frampton Journeys Beyond the Standard Model , 2001 .

[20]  J. Valle,et al.  Status of global fits to neutrino oscillations , 2004, hep-ph/0405172.

[21]  Chang,et al.  Small and calculable Dirac neutrino mass. , 1987, Physical review letters.

[22]  Minimal mass matrices for Dirac neutrinos , 2005, hep-ph/0503143.

[23]  L. Susskind,et al.  Baryon number of the universe , 1978 .

[24]  Schramm,et al.  Astrophysical constraints on the couplings of axions, majorons, and familons. , 1986, Physical review letters.

[25]  Leptogenesis for pedestrians , 2004, hep-ph/0401240.

[26]  J. Casas,et al.  Oscillating neutrinos and ? e, ? , 2001, hep-ph/0103065.

[27]  Harvey,et al.  Cosmological baryon and lepton number in the presence of electroweak fermion-number violation. , 1990, Physical review. D, Particles and fields.

[28]  Pierre Ramond,et al.  Journeys Beyond The Standard Model , 1999 .

[29]  N. Krasnikov,et al.  Universal CP-noninvariant superweak interaction and bayron asymmetry of the universe , 1978 .

[30]  Baryogenesis through leptogenesis , 1999, hep-ph/9911315.

[31]  B. Pontekorvo NEUTRINO EXPERIMENTS AND THE QUESTION OF LEPTON CHARGE CONSERVATION. , 1967 .

[32]  Apostolos Pilaftsis CP violation and baryogenesis due to heavy Majorana neutrinos , 1997 .

[33]  D. Wyler,et al.  Naturally light Dirac neutrinos in gauge theories , 1983 .

[34]  S. Wolfram,et al.  Baryon number generation in the early universe , 1980 .

[35]  J. Valle,et al.  Invisible Higgs decays and neutrino physics , 1993 .

[36]  Flavour matters in leptogenesis , 2006, hep-ph/0605281.

[37]  Carlson Ed,et al.  nu micro and nu tau as dark matter. , 1989 .

[38]  A. Ibarra,et al.  A Lower bound on the right-handed neutrino mass from leptogenesis , 2002, hep-ph/0202239.

[39]  Phenomenology of Dirac neutrinogenesis in split supersymmetry , 2005, hep-ph/0511206.

[40]  G. Jungman,et al.  Massive neutrinos and the weak scale singlet Majoron , 1991 .

[41]  M. Losada,et al.  Flavour issues in leptogenesis , 2006, hep-ph/0601083.

[42]  A. Pilaftsis Resonant tau leptogenesis with observable lepton number violation. , 2004, Physical review letters.

[43]  M. Roncadelli,et al.  Bounds and prospects for the majoron model of left-handed neutrino masses , 1982 .

[44]  Towards a complete theory of thermal leptogenesis in the SM and MSSM , 2003, hep-ph/0310123.

[45]  Hill,et al.  Electroweak symmetry breaking by fourth-generation condensates and the neutrino spectrum. , 1991, Physical review. D, Particles and fields.

[46]  Symmetry Breaking Through Bell-Jackiw Anomalies , 1976 .

[47]  Y. Nir,et al.  The importance of flavor in leptogenesis , 2006, hep-ph/0601084.

[48]  Do solar neutrinos decay , 2002, hep-ph/0204111.

[49]  H. Nielsen,et al.  Hierarchy of Quark Masses, Cabibbo Angles and CP Violation , 1979 .

[50]  F. Wilczek,et al.  Higgs-field portal into hidden sectors , 2006, hep-ph/0605188.

[51]  Arcadi Santamaria,et al.  Astrophysical bound on the majoron-Higgs-boson coupling , 1989 .

[52]  M. Lindner,et al.  Leptogenesis with dirac neutrinos , 1999, Physical review letters.

[53]  N. K. Pak,et al.  Dirac leptogenesis and anomalous U(1) , 2004 .

[54]  A. Pilaftsis,et al.  Resonant Leptogenesis , 2003, hep-ph/0309342.

[55]  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.