Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons.

Two-dimensional lattices of coupled micropillars etched in a planar semiconductor microcavity offer a workbench to engineer the band structure of polaritons. We report experimental studies of honeycomb lattices where the polariton low-energy dispersion is analogous to that of electrons in graphene. Using energy-resolved photoluminescence, we directly observe Dirac cones, around which the dynamics of polaritons is described by the Dirac equation for massless particles. At higher energies, we observe p orbital bands, one of them with the nondispersive character of a flatband. The realization of this structure which holds massless, massive, and infinitely massive particles opens the route towards studies of the interplay of dispersion, interactions, and frustration in a novel and controlled environment.

[1]  Andrew G. Glen,et al.  APPL , 2001 .