Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters

This study addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via adaptive sliding mode control. To achieve synchronization, a switching surface is adopted such that it becomes easy to ensure the stability of the error dynamics in the sliding mode. Then an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion even when the parameters of the drive and response gyros are fully unknown. Numerical simulations are presented to verify that the synchronization can be achieved by using this ASMC.

[1]  Juebang Yu,et al.  Chaos synchronization using single variable feedback based on backstepping method , 2004 .

[2]  Sarah K. Spurgeon,et al.  Sliding mode observers for fault detection and isolation , 2000, Autom..

[3]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[4]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[5]  Qidi Wu,et al.  Impulsive control for the stabilization and synchronization of Lorenz systems , 2002 .

[6]  Hsun-Jung Cho,et al.  Chaos and control of discrete dynamic traffic model , 2005, J. Frankl. Inst..

[7]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[8]  R. V. Dooren,et al.  Comments on “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping” , 2003 .

[9]  Shuzhi Sam Ge,et al.  Synchronization of Two uncertain Chaotic Systems via Adaptive backstepping , 2001, Int. J. Bifurc. Chaos.

[10]  Xinghuo Yu,et al.  Chaos Synchronization via Controlling Partial State of Chaotic Systems , 2001, Int. J. Bifurc. Chaos.

[11]  Wei Xu,et al.  Synchronization of two chaotic nonlinear gyros using active control , 2005 .

[12]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.

[13]  Shihua Chen,et al.  Impulsive control and synchronization of unified chaotic system , 2004 .

[14]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[15]  Roland Schmitz,et al.  Use of chaotic dynamical systems in cryptography , 2001, J. Frankl. Inst..

[16]  Donghua Zhou,et al.  A new observer-based synchronization scheme for private communication , 2005 .

[17]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[18]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[19]  Guanrong Chen,et al.  Effective chaotic orbit tracker: a prediction-based digital redesign approach , 2000 .

[20]  H.-K. Chen CHAOS AND CHAOS SYNCHRONIZATION OF A SYMMETRIC GYRO WITH LINEAR-PLUS-CUBIC DAMPING , 2002 .

[21]  X. Tong,et al.  Chaotic Motion of a Symmetric Gyro Subjected to a Harmonic Base Excitation , 2001 .

[22]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[23]  Z. Ge,et al.  Bifurcations and chaos in a rate gyro with harmonic excitation , 1996 .

[24]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[25]  Tzuyin Wu,et al.  Chaos control of the modified Chua's circuit system , 2002 .

[26]  Xinghuo Yu,et al.  Stabilizing unstable periodic orbits of chaotic systems via an optimal principle , 2000, J. Frankl. Inst..