Three dimensional SPH-FEM gluing for simulation of fast impacts on concrete slabs

This paper is mainly dedicated to the presentation of a general method to couple standard finite elements with SPH methods for fast transient analysis. The method is based on hand shake formulation and developed for fast transient. This type of gluing permits to use SPH only in the region of interest. The SPH methods is often CPU time consuming, hence this coupling strategy is interesting provided one knows in advance where the critical zone is. The method is applied to the prediction of perforation of available reinforced concrete slabs experiments. A concrete damage model adapted to high strain rate is also described.

[1]  Timon Rabczuk,et al.  Modelling dynamic failure of concrete with meshfree methods , 2006 .

[2]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[3]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[4]  R. A. Uras,et al.  Enrichment of the Finite Element Method With the Reproducing Kernel Particle Method , 1995 .

[5]  Alain Combescure,et al.  An SPH shell formulation for plasticity and fracture analysis in explicit dynamics , 2008 .

[6]  Alain Combescure,et al.  Damage model with delay effect Analytical and numerical studies of the evolution of the characteristic damage length , 2003 .

[7]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[8]  Eugenio Oñate,et al.  Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems , 2004 .

[9]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[10]  E. Ramm,et al.  On the application of a discrete model to the fracture process of cohesive granular materials , 2002 .

[11]  O. Allix,et al.  Delayed-Damage Modelling for Fracture Prediction of Laminated Composites under Dynamic Loading , 1997 .

[12]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[13]  T. Rabczuk,et al.  A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks , 2007 .

[14]  Ted Belytschko,et al.  Simulations of instability in dynamic fracture by the cracking particles method , 2009 .

[15]  L. Daudeville,et al.  Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach , 2008 .

[16]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[17]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[18]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[19]  Wing Kam Liu,et al.  Wavelet and multiple scale reproducing kernel methods , 1995 .

[20]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[21]  C. Mariotti,et al.  Numerical study of rock and concrete behaviour by discrete element modelling , 2000 .

[22]  D Dries Hegen,et al.  Element-free Galerkin methods in combination with finite element approaches , 1996 .

[23]  M. J. Forrestal,et al.  Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths , 1992 .

[24]  G. R. Johnson,et al.  An improved generalized particle algorithm that includes boundaries and interfaces , 2002 .

[25]  T. Belytschko,et al.  Consistent pseudo-derivatives in meshless methods , 1997 .

[26]  Ted Belytschko,et al.  Application of Particle Methods to Static Fracture of Reinforced Concrete Structures , 2006 .

[27]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[28]  Ted Belytschko,et al.  A coupled finite element-element-free Galerkin method , 1995 .

[29]  Timon Rabczuk,et al.  Coupling of mesh‐free methods with finite elements: basic concepts and test results , 2006 .

[30]  O. G. McGee,et al.  A THREE‐DIMENSIONAL ANALYSIS OF THE SPHEROIDAL AND TOROIDAL ELASTIC VIBRATIONS OF THICK‐WALLED SPHERICAL BODIES OF REVOLUTION , 1997 .

[31]  H. Dhia Problèmes mécaniques multi-échelles: la méthode Arlequin , 1998 .

[32]  V.P.W. Shim,et al.  Resistance of high-strength concrete to projectile impact , 2005 .

[33]  H. Nguyen-Xuan,et al.  A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures , 2008 .

[34]  P. Villon,et al.  GENERALIZING THE FEM: DIFFUSE APPROXIMATION AND DIFFUSE ELEMENTS , 1992 .

[35]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[36]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[37]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[38]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[39]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[40]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[41]  Gary A. Dilts,et al.  Moving least‐squares particle hydrodynamics II: conservation and boundaries , 2000 .

[42]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[43]  G. R. Johnson,et al.  SPH for high velocity impact computations , 1996 .

[44]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[45]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[46]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[47]  G. Rateau Méthode Arlequin pour les problèmes mécaniques multi-échelles : applications à des problèmes de jonction et de fissuration de structures élancées , 2003 .

[48]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[49]  Hiroshi Kadowaki,et al.  Bridging multi-scale method for localization problems , 2004 .

[50]  Hiroshi Kadowaki,et al.  A multiscale approach for the micropolar continuum model , 2005 .