Object reconstruction by incorporating geometric constraints in reverse engineering

This paper deals with the constrained reconstruction of 3D geometric models of objects from range data. It describes a new technique of global shape improvement based upon feature positions and geometric constraints. It suggests a general incremental framework whereby constraints can be added and integrated in the model reconstruction process, resulting in an optimal trade-off between minimization of the shape fitting error and the constraint tolerances. After defining sets of constraints for planar and special case quadric surface classes based on feature coincidence, position and shape, the paper shows through application on synthetic model that our scheme is well behaved. The approach is then validated through experiments on different real parts. This work is the first to give such a large framework for the integration of geometric relationships in object modelling. The technique is expected to have a great impact in reverse engineering applications and manufactured object modelling where the majority of parts are designed with intended feature relationships.

[1]  Christoph M. Hoffmann,et al.  Finding Solvable Subsets of Constraint Graphs , 1997, CP.

[2]  Ivan Herman The Use of Projective Geometry in Computer Graphics , 1992, Lecture Notes in Computer Science.

[3]  S. Y. Wong,et al.  An optimization approach for biarc curve-fitting of B-spline curves , 1996, Comput. Aided Des..

[4]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Toshiharu Taura,et al.  Application of evolutionary programming to shape design , 1998, Comput. Aided Des..

[6]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  R. Light,et al.  Modification of geometric models through variational geometry , 1982 .

[8]  R. Fletcher Practical Methods of Optimization , 1988 .

[9]  C. G. Broyden,et al.  Penalty functions, Newton's method, and quadratic programming , 1988 .

[10]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[11]  Christoph M. Hoffmann,et al.  Constraint-based parametric conics for CAD , 1996, Comput. Aided Des..

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Marc H. Raibert,et al.  Running With Symmetry , 1986 .

[14]  Hendrik Van Brussel,et al.  A Smoothly Constrained Kalman Filter , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Robert B. Fisher,et al.  Investigating Evolutionary Optimisation of Constrained Functions to Capture Shape Descriptions from Range Data , 1999 .

[16]  David R. Wallace,et al.  Design search under probabilistic specifications using genetic algorithms , 1996, Comput. Aided Des..

[17]  Reiner Anderl,et al.  Modelling with constraints: theoretical foundation and application , 1996, Comput. Aided Des..

[18]  Long Quan,et al.  Conic Reconstruction and Correspondence From Two Views , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  Zesheng Tang,et al.  Reconstruction of 3D Objects from Orthographic Projections , 1986, Comput. Graph. Forum.

[21]  John Porrill,et al.  Optimal Combination and Constraints for Geometrical Sensor Data , 1988, Int. J. Robotics Res..

[22]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  K. Kondo,et al.  Algebraic method for manipulation of dimensional relationships in geometric models , 1992, Comput. Aided Des..

[24]  Byeong-Seok Shin,et al.  Fast 3D solid model reconstruction from orthographic views , 1998, Comput. Aided Des..

[25]  Richard H. Crawford,et al.  Assembly modelling by geometric constraint satisfaction , 1996, Comput. Aided Des..

[26]  H. Bunke,et al.  3-D Object Recognition Based on Subgraph Matching in Polynomial Time , 1990 .

[27]  R. J. Bell,et al.  An Elementary Treatise on Coordinate Geometry of Three Dimensions , 2009, Nature.

[28]  David B. Cooper,et al.  On Optimally Combining Pieces of Information, with Application to Estimating 3-D Complex-Object Position from Range Data , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Christoph M. Hoffmann,et al.  A Spatial Constraint Problem , 1995 .

[30]  Zesheng Tang,et al.  Efficient algorithm for the reconstruction of 3D objects from orthographic projections , 1994, Comput. Aided Des..

[31]  Andrew W. Fitzgibbon,et al.  High-level model acquisition from range images , 1997, Comput. Aided Des..

[32]  Ralph R. Martin,et al.  Reverse engineering of geometric models - an introduction , 1997, Comput. Aided Des..

[33]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Alyn P. Rockwood,et al.  Three-dimensional object reconstruction from two-dimensional images , 1997, Comput. Aided Des..

[35]  Philip E. Gill,et al.  Practical optimization , 1981 .

[36]  R. Bolles,et al.  Recognizing and Locating Partially Visible Objects: The Local-Feature-Focus Method , 1982 .

[37]  J. Dill,et al.  Intelligent computer aided design , 1993 .

[38]  Robert B. Fisher,et al.  Improving model shape acquisition by incorporating geometric constraints , 1997, BMVC.

[39]  Harry Shum,et al.  Principal Component Analysis with Missing Data and Its Application to Polyhedral Object Modeling , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Robert C. Bolles,et al.  3DPO: A Three- Dimensional Part Orientation System , 1986, IJCAI.

[41]  S. N. Muthukrishnan,et al.  Refinement of 3D meshes at surface intersections , 1995, Comput. Aided Des..

[42]  Beno Benhabib,et al.  Constraints on quadratic-curved features under perspective projection , 1992, Image Vis. Comput..

[43]  Remco C. Veltkamp,et al.  Geometric Constraint Management with Quanta , 1991, IntCAD.

[44]  Xiao-Shan Gao,et al.  Solving geometric constraint systems. I. A global propagation approach , 1998, Comput. Aided Des..

[45]  Fuhua Cheng,et al.  Energy and B-spline interproximation , 1997, Comput. Aided Des..

[46]  Gene H. Golub,et al.  Matrix computations , 1983 .

[47]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[48]  Denis Laurendeau,et al.  Surface modeling from dynamic integration of multiple range views , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[49]  Kim L. Boyer,et al.  The Robust Sequential Estimator: A General Approach and its Application to Surface Organization in Range Data , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Deepak Kapur,et al.  Geometric reasoning , 1989 .

[51]  Andrew Kusiak,et al.  Constraint-based design of parts , 1995, Comput. Aided Des..

[52]  Ivan E. Sutherland,et al.  Sketchpad a Man-Machine Graphical Communication System , 1899, Outstanding Dissertations in the Computer Sciences.

[53]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[54]  Bruno Buchberger,et al.  Applications of Gröbner Bases in Non-linear Computational Geometry , 1987, Trends in Computer Algebra.

[55]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[56]  M. Ferri,et al.  Projective pose estimation of linear and quadratic primitives in monocular computer vision , 1993 .

[57]  Jian Dong,et al.  Manufacturing feature determination and extraction - Part I: optimal volume segmentation , 1997, Comput. Aided Des..

[58]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[59]  Alberto Sanfeliu,et al.  Structural Pattern Analysis , 1990 .

[60]  Janusz S. Kowalik,et al.  Iterative methods for nonlinear optimization problems , 1972 .

[61]  Alan Borning,et al.  The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory , 1981, TOPL.

[62]  Christoph M. Hoffmann,et al.  Geometric constraint solver , 1995, Comput. Aided Des..

[63]  Song Han,et al.  On Recovering Hyperquadrics from Range Data , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Gershon Elber,et al.  Inferring 3D models from freehand sketches and constraints , 1997, Comput. Aided Des..

[65]  Baba C. Vemuri,et al.  3-D MODEL CONSTRUCTION FROM MULTIPLE VIEWS USING RANGE AND INTENSITY DATA. , 1986 .