Muc4 loss mitigates epidermal growth factor receptor activity essential for PDAC tumorigenesis

[1]  S. Batra,et al.  Cytokines Chattering in Pancreatic Ductal Adenocarcinoma Tumor Microenvironment. , 2022, Seminars in cancer biology.

[2]  S. Batra,et al.  MUC5AC serves as the nexus for β-catenin/c-Myc interplay to promote glutamine dependency during pancreatic cancer chemoresistance. , 2021, Gastroenterology.

[3]  Aidan R. O’Brien,et al.  Response to correspondence on “Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation” , 2021, Genome biology.

[4]  Aidan R. O’Brien,et al.  Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation , 2019, Genome Biology.

[5]  S. Batra,et al.  Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance , 2020, Molecular Cancer.

[6]  K. Pollard,et al.  The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice , 2019, Science.

[7]  Martin J. Aryee,et al.  Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer , 2019, Cell.

[8]  S. Batra,et al.  Cancer-associated mucins: role in immune modulation and metastasis , 2019, Cancer and Metastasis Reviews.

[9]  I. Endo,et al.  Overexpression of HER2 in the pancreas promotes development of intraductal papillary mucinous neoplasms in mice , 2018, Scientific Reports.

[10]  Jun Yao,et al.  Angiogenin/Ribonuclease 5 Is an EGFR Ligand and a Serum Biomarker for Erlotinib Sensitivity in Pancreatic Cancer. , 2018, Cancer cell.

[11]  Masato Ohtsuka,et al.  Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors , 2017, Nature Protocols.

[12]  M. Jauberteau,et al.  Sortilin limits EGFR signaling by promoting its internalization in lung cancer , 2017, Nature Communications.

[13]  S. Batra,et al.  MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma , 2017, Expert opinion on therapeutic targets.

[14]  Yutaka Inagaki,et al.  Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins , 2017, Genome Biology.

[15]  P. Storz Acinar cell plasticity and development of pancreatic ductal adenocarcinoma , 2017, Nature Reviews Gastroenterology &Hepatology.

[16]  B. Spencer‐Dene,et al.  YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK–STAT3 Signaling , 2016, Gastroenterology.

[17]  Luzhe Sun,et al.  TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells , 2016, Scientific Reports.

[18]  Suyun Huang,et al.  KLF4 Is Essential for Induction of Cellular Identity Change and Acinar-to-Ductal Reprogramming during Early Pancreatic Carcinogenesis. , 2016, Cancer cell.

[19]  I. van Seuningen,et al.  The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways. , 2015, Biochimica et biophysica acta.

[20]  S. Batra,et al.  Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells , 2015, Oncotarget.

[21]  P. Storz,et al.  NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas. , 2015, Gastroenterology.

[22]  S. Batra,et al.  NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer , 2014, Oncogene.

[23]  Lynette M. Smith,et al.  Smoking accelerates pancreatic cancer progression by promoting differentiation of MDSCs and inducing HB-EGF expression in macrophages , 2014, Oncogene.

[24]  S. Batra,et al.  PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia , 2014, Oncotarget.

[25]  C. Futter,et al.  EGF receptor trafficking: consequences for signaling and cancer , 2014, Trends in cell biology.

[26]  M. Miączyńska Effects of membrane trafficking on signaling by receptor tyrosine kinases. , 2013, Cold Spring Harbor perspectives in biology.

[27]  S. Batra,et al.  Mucins in pancreatic cancer and its microenvironment , 2013, Nature Reviews Gastroenterology &Hepatology.

[28]  Joseph M. Cruz,et al.  Conditionals by inversion provide a universal method for the generation of conditional alleles , 2013, Proceedings of the National Academy of Sciences.

[29]  K. Jensen,et al.  Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. , 2012, Cancer cell.

[30]  H. Crawford,et al.  KRAS above and beyond – EGFR in pancreatic cancer , 2012, Oncotarget.

[31]  S. Batra,et al.  Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy , 2012, Journal of Hematology & Oncology.

[32]  M. Barbacid,et al.  EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. , 2012, Cancer cell.

[33]  Jens T Siveke,et al.  EGF receptor is required for KRAS-induced pancreatic tumorigenesis. , 2012, Cancer cell.

[34]  N. Bardeesy,et al.  Ready, set, go: the EGF receptor at the pancreatic cancer starting line. , 2012, Cancer cell.

[35]  A. Siriwardena,et al.  Epidermal Growth Factor Receptor in Pancreatic Cancer , 2011, Cancers.

[36]  D. Kufe,et al.  The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. , 2007, Molecular cell.

[37]  R. Schmid,et al.  Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. , 2007, Cancer cell.

[38]  M. Heslin,et al.  Epidermal growth factor receptor (EGFR) is highly conserved in pancreatic cancer. , 2007, Surgery.

[39]  R. Schmid,et al.  Chromosomal instability in mouse metastatic pancreatic cancer--it's Kras and Tp53 after all. , 2005, Cancer cell.

[40]  Michael A. Hollingsworth,et al.  Mucins in cancer: protection and control of the cell surface , 2004, Nature Reviews Cancer.

[41]  S. Leach,et al.  Transgenic overexpression of amphiregulin induces a mitogenic response selectively in pancreatic duct cells. , 2002, Gastroenterology.