Cheat sensitive quantum bit commitment via pre- and post-selected quantum states

Cheat sensitive quantum bit commitment is a most important and realizable quantum bit commitment (QBC) protocol. By taking advantage of quantum mechanism, it can achieve higher security than classical bit commitment. In this paper, we propose a QBC schemes based on pre- and post-selected quantum states. The analysis indicates that both of the two participants’ cheat strategies will be detected with non-zero probability. And the protocol can be implemented with today’s technology as a long-term quantum memory is not needed.

[1]  G. He,et al.  Practically secure quantum bit commitment based on quantum seals , 2008, 0804.3531.

[2]  G. He,et al.  Oblivious transfer using quantum entanglement (9 pages) , 2006 .

[3]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[4]  Ashwin Nayak,et al.  Bit-commitment-based quantum coin flipping , 2002, quant-ph/0206123.

[5]  Su-Juan Qin,et al.  Improved Secure Multiparty Computation with a Dishonest Majority via Quantum Means , 2012, International Journal of Theoretical Physics.

[6]  Adrian Kent,et al.  Unconditionally secure bit commitment with flying qudits , 2011, ArXiv.

[7]  A. H. Werner,et al.  Quantum cryptography as a retrodiction problem. , 2009, Physical review letters.

[8]  David Chaum,et al.  Minimum Disclosure Proofs of Knowledge , 1988, J. Comput. Syst. Sci..

[9]  Qiaoyan Wen,et al.  Comment on “Secure multiparty computation with a dishonest majority via quantum means” , 2011 .

[10]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[11]  Rubens Viana Ramos,et al.  Quantum protocols for zero-knowledge systems , 2010, Quantum Inf. Process..

[12]  N Aharon,et al.  Fully distrustful quantum bit commitment and coin flipping. , 2011, Physical review letters.

[13]  Adrian Kent,et al.  Cheat sensitive quantum bit commitment. , 1999, Physical review letters.

[14]  K. Tamaki,et al.  Cheat-sensitive commitment of a classical bit coded in a block of m × n round-trip qubits , 2011 .

[15]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[16]  Hua Zhang,et al.  Verifiable quantum (k, n)-threshold secret sharing , 2012, Quantum Inf. Process..

[17]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[18]  Jeong Woon Choi,et al.  Non-static Quantum Bit Commitment , 2009, 0901.1178.

[19]  J. Bub Secure Key Distribution via Pre- and Post-Selected Quantum States , 2000, quant-ph/0006086.

[20]  Hua Zhang,et al.  Comment on quantum private comparison protocols with a semi-honest third party , 2012, Quantum Information Processing.

[21]  Gilles Brassard,et al.  Quantum Bit Commitment and Coin Tossing Protocols , 1990, CRYPTO.

[22]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[23]  G. He Secure quantum bit commitment against empty promises , 2006 .

[24]  Ying Sun,et al.  Information leak in Liu et al.’s quantum private comparison and a new protocol , 2012, The European Physical Journal D.

[25]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[26]  N. Gisin,et al.  A pr 2 00 5 The physics of no-bit-commitment : Generalized quantum nonlocality versus oblivious transfer , 2005 .

[27]  C. Helstrom Quantum detection and estimation theory , 1969 .

[28]  Christopher A. Fuchs Information Gain vs. State Disturbance in Quantum Theory , 1996 .

[29]  Vaidman,et al.  How to ascertain the values of sigmax, sigma y, and sigma z of a spin-1/2 particle. , 1987, Physical review letters.

[30]  Lev Vaidman,et al.  Practical quantum bit commitment protocol , 2011, Quantum Information Processing.

[31]  Qin Li,et al.  On the impossibility of non-static quantum bit commitment between two parties , 2011, Quantum Inf. Process..

[32]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[33]  G. He,et al.  Oblivious transfer using quantum entanglement , 2003, quant-ph/0312161.

[34]  Guido Bacciagaluppi,et al.  Quantum theory and the measurement problem , 2009 .

[35]  Gilles Brassard,et al.  Practical Quantum Oblivious Transfer , 1991, CRYPTO.

[36]  Ying Sun,et al.  Quantum private comparison against decoherence noise , 2013, Quantum Inf. Process..

[37]  Morad El Baz,et al.  Quantum key distribution via tripartite coherent states , 2011, Quantum Inf. Process..

[38]  Stefan Wolf,et al.  Bit commitment from weak non-locality , 2005, IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, 2005..