Parametrizations of Kojima’s system and relations to penalty and barrier functions

We investigate two homotopies that perturb Kojima’s system for describing critical points of a nonlinear optimization problem in finite dimension. Each of them characterizes stationary points of a usual penalty and a new “barrier” function. The latter is a continuous deformation of the objective, symmetric to the penalty from a formal point of view. Stationary points of these functions appear as perturbed critical points and vice versa. This permits new interpretations of the related solution methods and allows estimates of the solutions by using implicit function theorems for Lipschitzian equations.

[1]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[2]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[3]  F. Clarke,et al.  Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .

[4]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[5]  W. Rheinboldt Schwetlick H., Numerische Lösung nichtlinearer Gleichungen. Berlin VEB Deutscher Verlag der Wissenschaften 1979. 346 S., 21 Abb., M 68,— , 1980 .

[6]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[7]  Bernd Kummer An implicit-function theorem for C0, 1-equations and parametric C1, 1-optimization , 1991 .

[8]  B. Kummer Lipschitzian inverse functions, directional derivatives, and applications inC1,1 optimization , 1991 .

[9]  Hubertus Th. Jongen,et al.  Implicit functions and sensitivity of stationary points , 1990, Math. Program..

[10]  Lionel Thibault,et al.  On generalized differentials and subdifferentials of Lipschitz vector-valued functions , 1982 .

[11]  H. Schwetlick Numerische Lösung nichtlinearer Gleichungen , 1978 .

[12]  Lionel Thibault,et al.  Subdifferentials of compactly lipschitzian vector-valued functions , 1980 .

[13]  Bernd Kummer,et al.  On solvability and regularity of a parametrized version of optimality conditions , 1995, Math. Methods Oper. Res..

[14]  A. Mayne Parametric Optimization: Singularities, Pathfollowing and Jumps , 1990 .

[15]  B. Kummer Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis , 1992 .