Co-BERT: A Context-Aware BERT Retrieval Model Incorporating Local and Query-specific Context

BERT-based text ranking models have dramatically advanced the state-of-the-art in ad-hoc retrieval, wherein most models tend to consider individual query-document pairs independently. In the meantime, the importance and usefulness to consider the crossdocuments interactions and the query-specific characteristics in a ranking model have been repeatedly confirmed, mostly in the context of learning to rank. The BERT-based ranking model, however, has not been able to fully incorporate these two types of ranking context, thereby ignoring the inter-document relationships from the ranking and the differences among queries. To mitigate this gap, in this work, an end-to-end transformer-based ranking model, named Co-BERT, has been proposed to exploit several BERT architectures to calibrate the query-document representations using pseudo relevance feedback before modeling the relevance of a group of documents jointly. Extensive experiments on two standard test collections confirm the effectiveness of the proposed model in improving the performance of text re-ranking over strong fine-tuned BERT-Base baselines. We plan to make our implementation open source to enable further comparisons.

[1]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[2]  Charles L. A. Clarke,et al.  Overview of the TREC 2004 Terabyte Track , 2004, TREC.

[3]  Zhuyun Dai,et al.  Rethinking Query Expansion for BERT Reranking , 2020, ECIR.

[4]  Marc Najork,et al.  Self-Attentive Document Interaction Networks for Permutation Equivariant Ranking , 2019, ArXiv.

[5]  Jun Xu,et al.  SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval , 2020, SIGIR.

[6]  Craig MacDonald,et al.  From Puppy to Maturity: Experiences in Developing Terrier , 2012, OSIR@SIGIR.

[7]  Peng Zhou,et al.  FastBERT: a Self-distilling BERT with Adaptive Inference Time , 2020, ACL.

[8]  Xianpei Han,et al.  BERT-QE: Contextualized Query Expansion for Document Re-ranking , 2020, FINDINGS.

[9]  Tie-Yan Liu,et al.  Introduction to special issue on learning to rank for information retrieval , 2010, Information Retrieval.

[10]  Yiqun Liu,et al.  Leveraging Passage-level Cumulative Gain for Document Ranking , 2020, WWW.

[11]  Hamed Zamani,et al.  Conformer-Kernel with Query Term Independence for Document Retrieval , 2020, ArXiv.

[12]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[13]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[14]  S. Robertson The probability ranking principle in IR , 1997 .

[15]  Filip Radlinski,et al.  TREC Complex Answer Retrieval Overview , 2018, TREC.

[16]  Gianni Amati,et al.  Probability models for information retrieval based on divergence from randomness , 2003 .

[17]  W. Bruce Croft,et al.  A Deep Relevance Matching Model for Ad-hoc Retrieval , 2016, CIKM.

[18]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[19]  Kyunghyun Cho,et al.  Passage Re-ranking with BERT , 2019, ArXiv.

[20]  Jamie Callan,et al.  Deeper Text Understanding for IR with Contextual Neural Language Modeling , 2019, SIGIR.

[21]  M. Zaharia,et al.  ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT , 2020, SIGIR.

[22]  Jimmy J. Lin,et al.  Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval , 2019, EMNLP.

[23]  Liu Yang,et al.  Long Range Arena: A Benchmark for Efficient Transformers , 2020, ICLR.

[24]  Ellen M. Voorhees,et al.  Overview of the TREC 2004 Robust Track. , 2004 .

[25]  W. Bruce Croft,et al.  Learning a Deep Listwise Context Model for Ranking Refinement , 2018, SIGIR.

[26]  Zhiyuan Liu,et al.  Understanding the Behaviors of BERT in Ranking , 2019, ArXiv.

[27]  Jianfeng Gao,et al.  A Human Generated MAchine Reading COmprehension Dataset , 2018 .

[28]  Sebastian Bruch,et al.  Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks , 2018, ICTIR.

[29]  Lukasz Kaiser,et al.  Reformer: The Efficient Transformer , 2020, ICLR.

[30]  Jimmy J. Lin,et al.  Multi-Stage Document Ranking with BERT , 2019, ArXiv.

[31]  Zhuyun Dai,et al.  PGT: Pseudo Relevance Feedback Using a Graph-Based Transformer , 2021, ECIR.

[32]  Hang Li,et al.  A Short Introduction to Learning to Rank , 2011, IEICE Trans. Inf. Syst..

[33]  Yingfei Sun,et al.  PARADE: Passage Representation Aggregation forDocument Reranking , 2020, ACM Trans. Inf. Syst..

[34]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[35]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[36]  Danqi Chen,et al.  Dense Passage Retrieval for Open-Domain Question Answering , 2020, EMNLP.

[37]  Tao Qin,et al.  LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.

[38]  Zhuyun Dai,et al.  Context-Aware Sentence/Passage Term Importance Estimation For First Stage Retrieval , 2019, ArXiv.

[39]  Giorgio Gambosi,et al.  FUB, IASI-CNR and University of Tor Vergata at TREC 2008 Blog Track , 2008, TREC.

[40]  Dirk Krechel,et al.  CoRT: Complementary Rankings from Transformers , 2021, NAACL.

[41]  Nazli Goharian,et al.  CEDR: Contextualized Embeddings for Document Ranking , 2019, SIGIR.

[42]  Craig MacDonald,et al.  Toward Reproducible Baselines: The Open-Source IR Reproducibility Challenge , 2016, ECIR.