The ABC of Creative Telescoping - Algorithms, Bounds, Complexity

Creative telescoping is an algorithmic principle that has been developed since the 1990s in combinatorics and computer algebra, notably since Doron Zeilberger's work, in order to compute with parametrised sums and integrals, whether it be to find explicit forms or to justify identities in sums or integrals. The process is particularly suited to a large family of functions and sequences given by linear differential and recurrence equations, whether it be special functions of analysis, sequences of combinatorics, or families of orthogonal polynomials. In the present memoir, I shall recount the evolution of algorithms and of my contributions in adapting the approach to larger and larger classes of functions, from the initial framework of hypergeometric sequences, given by first-order recurrences, to the case of functions given by higher-order equations, then to functions given by positive-dimensional ideals. The difficulty to obtain fast implementations in all these cases stems from the computation of a certificate that justifies the applicability of creative telescoping, this certificate being naturally of large size. This motivated me in the complexity study of the process. Several tracks of improvement have been explored, first by trying and maintaining the certificate in compact form, then in obtaining algorithms that are validated without computing any certificate. As often, estimating the arithmetical sizes of objects involved in creative telescoping has at the same time guided the design of new, more efficient algorithms and made it possible to estimate their theoretical complexity. Finally, I shall briefly indicate the new direction taken in my works, towards formal proofs, which reveal new tracks for a better justification of the use of creative telescoping.

[1]  Axel Riese Fine-Tuning Zeilberger’s Algorithm , 2001 .

[2]  Nobuki Takayama,et al.  Algorithms for D-modules - restriction, tensor product, localization, and local cohomology groups , 1998 .

[3]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[4]  William J. Milne High school algebra , 2008 .

[5]  Doron Zeilberger,et al.  A WZ proof of Ramanujan's Formula for Pi , 1993 .

[6]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[7]  Manuel Kauers,et al.  Order-degree curves for hypergeometric creative telescoping , 2012, ISSAC.

[8]  Michael Kalkbrener,et al.  Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..

[9]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[10]  Doron Zeilberger,et al.  Sharp upper bounds for the orders of the recurrences output by the Zeilberger and q-Zeilberger algorithms , 2005, J. Symb. Comput..

[11]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[12]  Toshinori Oaku,et al.  Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities , 2011, J. Symb. Comput..

[13]  Vladimir Retakh,et al.  General hypergeometric systems of equations and series of hypergeometric type , 1992 .

[14]  Lisa H. Sun,et al.  Extended Zeilberger's Algorithm for Identities on Bernoulli and Euler Polynomials , 2008, 0810.0438.

[15]  Qing-Hu Hou,et al.  Proving hypergeometric identities by numerical verifications , 2008, J. Symb. Comput..

[16]  Éric Schost,et al.  Differential equations for algebraic functions , 2007, ISSAC '07.

[17]  Toshinori Oaku,et al.  Algorithms forb-Functions, Restrictions, and Algebraic Local Cohomology Groups ofD-Modules , 1997 .

[18]  Richard Askey,et al.  The world of q , 1992 .

[19]  C. G. Raab Generalization of Risch's Algorithm to Special Functions , 2013, ArXiv.

[20]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[21]  Oystein Ore Sur la forme des fonctions hypergéométriques de plusieurs variables , 1930 .

[22]  Manuel Bronstein,et al.  On polynomial solutions of linear operator equations , 1995, ISSAC '95.

[23]  Manuel Kauers,et al.  Desingularization explains order-degree curves for ore operators , 2013, ISSAC '13.

[24]  Sergei A. Abramov Rational solutions of linear difference and q-difference equations with polynomial coefficients , 1995, ISSAC '95.

[25]  Michael Karr,et al.  Summation in Finite Terms , 1981, JACM.

[26]  Sergei A. Abramov,et al.  A criterion for the applicability of Zeilberger's algorithm to rational functions , 2002, Discret. Math..

[27]  Pierre Verbaeten,et al.  Rekursiebetrekkingen voor lineaire hypergeometrische funkties , 1976 .

[28]  Manuel Kauers,et al.  Summation algorithms for Stirling number identities , 2007, J. Symb. Comput..

[29]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[30]  S. A. Abramov,et al.  Applicability of Zeilberger’s Algorithm to Rational Functions , 2000 .

[31]  Ira M. Gessel Applications of the classical umbral calculus , 2001 .

[32]  Lily Yen A Two-Line Algorithm for Proving Terminating Hypergeometric Identities , 1996 .

[33]  N. Jacobson,et al.  On Pseudo-Linear Transformations. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mary Celine Fasenmyer A Note on Pure Recurrence Relations , 1949 .

[35]  Sergei A. Abramov,et al.  Applicability of Zeilberger's algorithm to hypergeometric terms , 2002, ISSAC '02.

[36]  Petr Lisonek,et al.  Improvement of the Degree Setting in Gospers's Algorithm , 1993, J. Symb. Comput..

[37]  Michael Karr,et al.  Theory of Summation in Finite Terms , 1985, J. Symb. Comput..

[38]  Harrison Tsai,et al.  Weyl Closure of a Linear Differential Operator , 2000, J. Symb. Comput..

[39]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[40]  Ha Q. Le On the q-Analogue of Zeilberger's Algorithm to Rational Functions , 2004, Programming and Computer Software.

[41]  Nobuki Takayama,et al.  A Localization Algorithm for D-modules , 2000, J. Symb. Comput..

[42]  Peter Paule,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .

[43]  Doron Zeilberger,et al.  Proof of Ira Gessel's lattice path conjecture , 2008, Proceedings of the National Academy of Sciences.

[44]  Bao-Yin Zhang A new elementary algorithm for proving q-hypergeometric identities , 2003, J. Symb. Comput..

[45]  Manuel Kauers,et al.  Telescopers for rational and algebraic functions via residues , 2012, ISSAC.

[46]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Toshinori Oaku Algorithms for b-Functions, Restrictions, and Algebraic Local CohomologyGroups of D-Modules , 2011 .

[48]  Nobuki Takayama,et al.  An Approach to the Zero Recognition Problem by Buchberger Algorithm , 1992, J. Symb. Comput..

[49]  Moulay A. Barkatou,et al.  On Rational Solutions of Systems of Linear Differential Equations , 1999, J. Symb. Comput..

[50]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[51]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[52]  Shaoshi Chen,et al.  Some applications of differential-difference algebra to creative telescoping. (Quelques applications de l'algébre différentielle et aux différences pour le télescopage créatif) , 2011 .

[53]  Peter Paule,et al.  Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..

[54]  Christoph Koutschan,et al.  A Fast Approach to Creative Telescoping , 2010, Math. Comput. Sci..

[55]  Qing-Hu Hou K-free Recurrences of Double Hypergeometric Terms , 2004, Adv. Appl. Math..

[56]  Helmut Prodinger Descendants in heap ordered trees or a triumph of computer algebra , 1996, Electron. J. Comb..

[57]  S. A. Abramov,et al.  When does Zeilberger's algorithm succeed? , 2003, Adv. Appl. Math..

[58]  L. Lipshitz,et al.  D-finite power series , 1989 .

[59]  Nobuki Takayama,et al.  Gröbner basis and the problem of contiguous relations , 1989 .

[60]  Alin Bostan,et al.  Fast algorithms for polynomial solutions of linear differential equations , 2005, ISSAC.

[61]  Andrew V. Sills,et al.  On identities of the Rogers-Ramanujan type , 2006, 1811.11285.

[62]  Kenta Nishiyama,et al.  An Algorithm of Computing Inhomogeneous Differential Equations for Definite Integrals , 2010, ICMS.

[63]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[64]  Doron Zeilberger,et al.  WZ-STYLE CERTIFICATION AND SISTER CELINE'S TECHNIQUE FOR ABEL-TYPE SUMS , 2007 .

[65]  Alin Bostan,et al.  Complexity estimates for two uncoupling algorithms , 2013, ISSAC '13.

[66]  Mikio Sato Theory of prehomogeneous vector spaces (algebraic part)---the English translation of Sato's lecture from Shintani's noteNotes by Takuro Shintani, Translated from the Japanese by Masakazu Muro , 1990 .

[67]  Carsten Schneider,et al.  Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.

[68]  R. Risch The problem of integration in finite terms , 1969 .

[69]  Leon M. Hall,et al.  Special Functions , 1998 .

[70]  Lily Yen A Two-Line Algorithm for Provingq-Hypergeometric Identities , 1997 .

[71]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[72]  William Y. C. Chen,et al.  Applicability of the q-analogue of Zeilberger's algorithm , 2004, J. Symb. Comput..

[73]  S. A. Abramov,et al.  Rational solutions of linear differential and difference equations with polynomial coefficients , 1991 .

[74]  Nobuki Takayama,et al.  Gröbner basis, integration and transcendental functions , 1990, ISSAC '90.

[75]  Christoph Koutschan,et al.  Creative Telescoping for Holonomic Functions , 2013, ArXiv.

[76]  Frédéric Chyzak,et al.  Fonctions holonomes en calcul formel , 1998 .

[77]  Manuel Kauers,et al.  A non-holonomic systems approach to special function identities , 2009, ISSAC '09.

[78]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[79]  Nobuki Takayama,et al.  An algorithm of constructing the integral of a module--an infinite dimensional analog of Gröbner basis , 1990, ISSAC '90.

[80]  Doron Zeilberger,et al.  Proof of George Andrews’s and David Robbins’s q-TSPP conjecture , 2010, Proceedings of the National Academy of Sciences.

[81]  B. Sturmfels,et al.  Gröbner Bases and Applications: Gröbner Bases and Hypergeometric Functions , 1998 .

[82]  Summary by Bruno Salvy , 2001 .

[83]  M. Lawrence Glasser,et al.  Some integrals involving Bessel functions , 1993 .

[84]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[85]  Masaki Kashiwara,et al.  On the holonomic systems of linear differential equations, II , 1978 .

[86]  Alin Bostan,et al.  Low complexity algorithms for linear recurrences , 2006, ISSAC '06.

[87]  Toshinori Oaku,et al.  An algorithm of computing $b$-functions , 1997 .

[88]  Ziming Li,et al.  Complexity of creative telescoping for bivariate rational functions , 2010, ISSAC.

[89]  André Galligo,et al.  Some algorithmic questions on ideals of differential operators , 1985 .

[90]  G. Doetsch,et al.  Integraleigenschaften der Hermiteschen Polynome , 1930 .

[91]  Alin Bostan,et al.  Creative telescoping for rational functions using the griffiths: dwork method , 2013, ISSAC '13.

[92]  Ziming Li,et al.  Hermite reduction and creative telescoping for hyperexponential functions , 2013, ISSAC '13.

[93]  Doron Zeilberger,et al.  Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory , 2006, Adv. Appl. Math..

[94]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[95]  Peter Paule,et al.  Greatest Factorial Factorization and Symbolic Summation , 1995, J. Symb. Comput..

[96]  Wolfram Koepf,et al.  Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..

[97]  Ryszard Smarzewski,et al.  On the numerical solution of an Abel integral equation , 1979 .

[98]  Doron Zeilberger,et al.  The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..

[99]  Manuel Kauers,et al.  Trading order for degree in creative telescoping , 2011, J. Symb. Comput..

[100]  M. H. Protter,et al.  THE SOLUTION OF THE PROBLEM OF INTEGRATION IN FINITE TERMS , 1970 .

[101]  J. J. Sylvester,et al.  XXIII. A method of determining by mere inspection the derivatives from two equations of any degree , 1840 .

[102]  I. N. Bernshtein The analytic continuation of generalized functions with respect to a parameter , 1972 .

[103]  Axel Riese,et al.  qMultiSum--a package for proving q-hypergeometric multiple summation identities , 2003, J. Symb. Comput..

[104]  Mark van Hoeij,et al.  Explicit formula for the generating series of diagonal 3D rook paths , 2011, ArXiv.

[105]  Doron Zeilberger,et al.  The Number of Solutions of X^2=0 in Triangular Matrices Over GF(q) , 1995, Electron. J. Comb..

[106]  Oystein Ore,et al.  Linear Equations in Non-Commutative Fields , 1931 .

[107]  Kurt Wegschaider,et al.  Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .

[108]  俊則 大阿久,et al.  An algorithm of computing $b$-functions , 1996 .

[109]  Akalu Tefera MultInt, a MAPLE Package for Multiple Integration by the WZ Method , 2002, J. Symb. Comput..

[110]  George E. Andrews,et al.  A general theory of identities of the Rogers-Ramanujan type , 1974 .

[111]  Doron Zeilberger,et al.  Improved algorithms and implementations in the multi-wz theory , 2000 .

[112]  S. V. Paramonov On rational solutions of linear partial differential or difference equations , 2013, Programming and Computer Software.

[113]  Mary Celine Fasenmyer Some generalized hypergeometric polynomials , 1947 .

[114]  Doron Zeilberger,et al.  Sister Celine's technique and its generalizations , 1982 .

[115]  Volker Strehl,et al.  Binomial identities - combinatorial and algorithmic aspects , 1994, Discret. Math..

[116]  Manuel Bronstein,et al.  An Introduction to Pseudo-Linear Algebra , 1996, Theor. Comput. Sci..

[117]  Pierre Verbaeten,et al.  The automatic construction of pure recurrence relations , 1974, SIGS.

[118]  Axel. Riese,et al.  FINE-TUNING ZEILBERGER ’ S ALGORITHM The Methods of Automatic Filtering and Creative Substituting , 2002 .

[119]  B. Sturmfels,et al.  Grbner Deformations of Hypergeometric Differential Equations , 2000 .

[120]  Doron Zeilberger,et al.  The Algebra of Linear Partial Difference Operators and Its Applications , 1980 .

[121]  Axel Riese,et al.  A Generalization of Gosper's Algorithm to Bibasic Hypergeometric Summation , 1996, Electron. J. Comb..

[122]  Doron Zeilberger,et al.  Rational function certification of multisum/integral/``$q$'' identities , 1992 .

[123]  FunctionsBernd Sturmfels,et al.  Grr Obner Bases and Hypergeometric Functions , 1997 .

[124]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .