Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

[1]  D. Sánchez-Gómez,et al.  Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers , 2012, BMC Genomics.

[2]  S. Ueno,et al.  The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don , 2012, BMC Genomics.

[3]  M. Cortijo,et al.  Characterization of two chemotypes of Pinus pinaster by their terpene and acid patterns in needles , 2012, Plant Systematics and Evolution.

[4]  C. Kole,et al.  Economic Importance, Breeding Objectives and Achievements , 2011 .

[5]  C. Kole,et al.  Genetics, genomics and breeding of conifers. , 2011 .

[6]  P. Rouzé,et al.  Title Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine , 2011 .

[7]  K. Ritland,et al.  QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments , 2011, BMC Genomics.

[8]  D. Sánchez-Gómez,et al.  Intraspecific variation in growth and allocation patterns in seedlings of Pinus pinaster Ait. submitted to contrasting watering regimes: can water availability explain regional variation? , 2010, Annals of Forest Science.

[9]  R. Alía,et al.  Molecular footprints of local adaptation in two Mediterranean conifers. , 2011, Molecular biology and evolution.

[10]  Chun Liang,et al.  An annotated genetic map of loblolly pine based on microsatellite and cDNA markers , 2011, BMC Genetics.

[11]  M. Cervera,et al.  In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species? , 2010, PloS one.

[12]  I. Aranda,et al.  Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations , 2010, Tree Genetics & Genomes.

[13]  M. Guevara,et al.  "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses". , 2008, Molecular biology and evolution.

[14]  Aljos Farjon,et al.  A natural history of conifers , 2008 .

[15]  Mark H. Wright,et al.  High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.) , 2008, Tree Genetics & Genomes.

[16]  F. Gagnon,et al.  Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce , 2008, BMC Genomics.

[17]  David B Neale,et al.  Genomics to tree breeding and forest health. , 2007, Current opinion in genetics & development.

[18]  R. Alía,et al.  Range‐wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers , 2007, Molecular ecology.

[19]  James B. Hicks,et al.  A plant DNA minipreparation: Version II , 1983, Plant Molecular Biology Reporter.

[20]  D. Neale,et al.  Tree improvement programs - structure, concepts and importance. , 2007 .

[21]  J. MacKay,et al.  Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs , 2006, BMC Genomics.

[22]  D. Neale,et al.  Forest-tree population genomics and adaptive evolution. , 2006, The New phytologist.

[23]  D. Pot,et al.  QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.) , 2006, Tree Genetics & Genomes.

[24]  D. Neale,et al.  Genomics applied to the study of adaptation in pine species , 2005 .

[25]  J. Bousquet,et al.  A composite linkage map from two crosses for the species complex Picea mariana × Picea rubens and analysis of synteny with other Pinaceae , 2005, Theoretical and Applied Genetics.

[26]  M. Cortijo,et al.  Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition , 2005 .

[27]  D. Neale,et al.  Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (Picea abies karst) , 2005, Tree Genetics & Genomes.

[28]  J. Bohlmann,et al.  Efficient Genetic Mapping of Single Nucleotide Polymorphisms Based Upon DNA Mismatch Digestion , 2005, Molecular Breeding.

[29]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[30]  Mattias Jakobsson,et al.  The Pattern of Polymorphism in Arabidopsis thaliana , 2005, PLoS biology.

[31]  M. Byrne,et al.  Isolation and characterization of nuclear microsatellite loci in Pinus pinaster Ait , 2005 .

[32]  D. Chagné,et al.  Cross-species transferability and mapping of genomic and cDNA SSRs in pines , 2004, Theoretical and Applied Genetics.

[33]  Garth R. Brown,et al.  Comparative Mapping in the Pinaceae , 2004, Genetics.

[34]  R. Alía,et al.  Genetic resources in maritime pine (Pinus pinaster Aiton): molecular and quantitative measures of genetic variation and differentiation among maternal lineages , 2004 .

[35]  Michael J. Sanderson,et al.  EVOLUTION OF GENOME SIZE IN PINES (PINUS) AND ITS LIFE‐HISTORY CORRELATES: SUPERTREE ANALYSES , 2004, Evolution; international journal of organic evolution.

[36]  G. Tuskan,et al.  Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map , 2004, Theoretical and Applied Genetics.

[37]  C. Williams,et al.  Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines , 2004, Theoretical and Applied Genetics.

[38]  A. C. Matheson,et al.  QTL associations for density and diameter in Pinus radiata and the potential for marker-aided selection , 2004, Theoretical and Applied Genetics.

[39]  Garth R. Brown,et al.  Comparative genome and QTL mapping between maritime and loblolly pines , 2003, Molecular Breeding.

[40]  M. Morgante,et al.  Pcr-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes , 1998, Molecular Breeding.

[41]  M. Montagu,et al.  Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus , 1996, Theoretical and Applied Genetics.

[42]  C. Durel,et al.  Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual , 1995, Theoretical and Applied Genetics.

[43]  C. Nelson,et al.  RAPD linkage mapping in a longleaf pine x slash pine F1 family , 1995, Theoretical and Applied Genetics.

[44]  F. Rodolphe,et al.  An estimation of the genome length of maritime pine (Pinus pinaster Ait.) , 1994, Theoretical and Applied Genetics.

[45]  D. Pot,et al.  Developing SSCP markers in two Pinus species , 2004, Molecular Breeding.

[46]  F. Rodolphe,et al.  Seed-protein variation in maritime pine (Pinus pinaster Ait.) revealed by two-dimensional electrophoresis: genetic determinism and construction of a linkage map , 2004, Theoretical and Applied Genetics.

[47]  Tomokazu Takahashi,et al.  A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. , 2003, Genetics.

[48]  D. Neale,et al.  Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda , 2003, Theoretical and Applied Genetics.

[49]  Steven Henikoff,et al.  Large-scale discovery of induced point mutations with high-throughput TILLING. , 2003, Genome research.

[50]  T. Yin,et al.  Nearly complete genetic maps of Pinus sylvestris L. (Scots pine) constructed by AFLP marker analysis in a full-sib family , 2003, Theoretical and Applied Genetics.

[51]  P. Faivre-Rampant,et al.  Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait.) , 2003 .

[52]  W. Boerjan,et al.  Lignin biosynthesis. , 2003, Annual review of plant biology.

[53]  R. Alía,et al.  Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits , 2002, Heredity.

[54]  D. Pot,et al.  Genetic parameters and QTL analysis of δ13C and ring width in maritime pine , 2002 .

[55]  D. Chagné,et al.  A high density genetic map of maritime pine based on AFLPs , 2002 .

[56]  S. Jeandroz,et al.  Towards construction of an ultra high density linkage map for Pinus pinaster , 2002 .

[57]  D. Pot,et al.  Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). , 2002 .

[58]  C. Plomion,et al.  Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple‐sequence repeat and amplified fragment length polymorphism data , 2002, Molecular ecology.

[59]  Santiago González Martínez Estructura poblacional y flujo genético de Pinus pinaster Aiton en el noroeste de la Península Ibérica , 2002 .

[60]  J. Bousquet,et al.  Megagametophyte-derived linkage maps of white spruce (Picea glauca) based on RAPD, SCAR and ESTP markers , 2002, Theoretical and Applied Genetics.

[61]  R. Alía,et al.  Evaluation of high resin yielders of Pinus pinaster Ait. , 2002 .

[62]  L. Auckland,et al.  Conifer microsatellite handbook. , 2002 .

[63]  C. Elsik,et al.  Low-copy microsatellite recovery from a conifer genome , 2001, Theoretical and Applied Genetics.

[64]  Garth R. Brown,et al.  Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. , 2001, Genetics.

[65]  M. Van Montagu,et al.  Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. , 2001, Genetics.

[66]  D. Chagné,et al.  Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers , 2001, Heredity.

[67]  D. Neale,et al.  Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.) , 2001, Theoretical and Applied Genetics.

[68]  D. Chagné,et al.  Microsatellite markers for Pinus pinaster Ait. , 2001 .

[69]  R. Alía,et al.  Genetic improvement of resin yield from maritime pine in Spain , 2001 .

[70]  John Cloud,et al.  Hidden in plain sight : The CORONA reconnaissance satellite programme and clandestine cold war science , 2001 .

[71]  J. S. Heslop-Harrison,et al.  The contribution of short repeats of low sequence complexity to large conifer genomes , 2000, Theoretical and Applied Genetics.

[72]  C. Elsik,et al.  Retroelements contribute to the excess low-copy-number DNA in pine , 2000, Molecular and General Genetics MGG.

[73]  R. Alía,et al.  Modelling resin production distributions for Pinus Pinaster Ait using two probability functions , 2000 .

[74]  M. Cervera,et al.  Molecular Markers and Genome Mapping in Woody Plants , 2000 .

[75]  J. Pardos,et al.  Effects of water supply on gas exchange in Pinus pinaster Ait. provenances during their first growing season , 2000 .

[76]  D. Pot,et al.  A genetic map of Maritime pine based on AFLP, RAPD and protein markers , 2000, Theoretical and Applied Genetics.

[77]  S. Jain,et al.  Molecular Biology of Woody Plants , 2000, Forestry Sciences.

[78]  Earl Hubbell,et al.  Genome-wide mapping with biallelic markers in Arabidopsis thaliana , 1999, Nature Genetics.

[79]  M. Devey,et al.  Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers , 1999, Theoretical and Applied Genetics.

[80]  R. Whetten,et al.  Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda , 1999, Theoretical and Applied Genetics.

[81]  G. Vendramin,et al.  Distribution of genetic diversity in Pinus pinaster Ait. as revealed by chloroplast microsatellites , 1998, Theoretical and Applied Genetics.

[82]  C. Nelson,et al.  Linkage mapping and genome length in eastern white pine (Pinus strobus L.) , 1997, Theoretical and Applied Genetics.

[83]  M. Lascoux,et al.  Relation between protein markers and quantitative traits in maritime pine (Pinus pinaster AIT.) , 1997 .

[84]  C. Plomion,et al.  Genetic analysis of needle proteins in maritime pine. 1. Mapping dominant and codominant protein markers assayed on diploid tissue, in a haploid-based genetic map , 1997 .

[85]  C. Plomion,et al.  Genetic determinism of δ3-carene in maritime pine using RAPD markers. , 1996, Genome.

[86]  C. Plomion,et al.  Recombination rate differences for pollen parents and seed parents in Pinus pinaster , 1996, Heredity.

[87]  C. Durel,et al.  Genomic mapping in Pinus pinaster (maritime pine) using RAPD and protein markers , 1995, Heredity.

[88]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[89]  R. Sederoff,et al.  Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. , 1994, Genetics.

[90]  A. Chakravarti,et al.  A maximum likelihood method for estimating genome length using genetic linkage data. , 1991, Genetics.

[91]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[92]  F. Salamini,et al.  Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. , 1990, Genetics.

[93]  N. Bahrman,et al.  Linkage relationships of loci controlling protein amounts in maritime pine (Pinus pinaster Ait.) , 1989, Heredity.

[94]  E. Lander,et al.  Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. , 1988, Genetics.

[95]  G. Farquhar,et al.  Isotopic Composition of Plant Carbon Correlates With Water-Use Efficiency of Wheat Genotypes , 1984 .

[96]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .

[97]  K. Sax,et al.  Chromosome number and morphology in the conifers , 1933 .