Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells

Peptidoglycans provide bacterial cell walls with mechanical strength. The spatial organization of peptidoglycan has previously been difficult to study. Here, atomic force microscopy, together with cells carrying mutations in cell-wall polysaccharides, has allowed an in-depth study of these molecules.

[1]  Yves F Dufrêne,et al.  Atomic force microscopy and chemical force microscopy of microbial cells , 2008, Nature Protocols.

[2]  Yves F. Dufrêne,et al.  Towards nanomicrobiology using atomic force microscopy , 2008, Nature Reviews Microbiology.

[3]  Julie Gold,et al.  Protein Adsorption on Model Surfaces with Controlled Nanotopography and Chemistry , 2002 .

[4]  T. Beveridge,et al.  Surface layers of bacteria. , 1991, Microbiological reviews.

[5]  S. D. De Keersmaecker,et al.  Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. , 2008, ACS nano.

[6]  K. Amako,et al.  Arrangement of peptidoglycan in the cell wall of Staphylococcus spp , 1982, Journal of bacteriology.

[7]  G. Robillard,et al.  Novel Surface Display System for Proteins on Non-Genetically Modified Gram-Positive Bacteria , 2006, Applied and Environmental Microbiology.

[8]  R. Verwer,et al.  Arrangement of glycan chains in the sacculus of Escherichia coli , 1978, Journal of bacteriology.

[9]  S. Foster,et al.  Cell wall peptidoglycan architecture in Bacillus subtilis , 2008, Proceedings of the National Academy of Sciences.

[10]  C. Weidenmaier,et al.  Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions , 2008, Nature Reviews Microbiology.

[11]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[12]  Harma A. Karsens,et al.  Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA , 1997, Applied and environmental microbiology.

[13]  C. Pillidge,et al.  Characterization of the Highly Autolytic Lactococcus lactis subsp. cremoris Strains CO and 2250 , 1997, Applied and environmental microbiology.

[14]  Alain R. Baulard,et al.  Organization of the mycobacterial cell wall: a nanoscale view , 2008, Pflügers Archiv - European Journal of Physiology.

[15]  M. Gasson,et al.  Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing , 1983, Journal of bacteriology.

[16]  C. Péchoux,et al.  Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle* , 2010, The Journal of Biological Chemistry.

[17]  W. D. de Vos,et al.  Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis , 1996, Journal of bacteriology.

[18]  Yves F. Dufrêne,et al.  Using nanotechniques to explore microbial surfaces , 2004, Nature Reviews Microbiology.

[19]  P. Giesbrecht,et al.  Staphylococcal Cell Wall: Morphogenesis and Fatal Variations in the Presence of Penicillin , 1998, Microbiology and Molecular Biology Reviews.

[20]  Grant J. Jensen,et al.  Molecular organization of Gram-negative peptidoglycan , 2008, Proceedings of the National Academy of Sciences.

[21]  T. Vernet,et al.  The different shapes of cocci. , 2008, FEMS microbiology reviews.

[22]  T. Vernet,et al.  Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin‐binding proteins during the cell cycle , 2003, Molecular microbiology.

[23]  J. Sullivan,et al.  Autolysis of Streptococcus cremoris , 1976, Journal of Dairy Research.

[24]  Y. Dufrêne,et al.  X-ray photoelectron spectroscopy analysis of the surface composition of Azospirillum brasilense in relation to growth conditions , 1996 .

[25]  Michael Erkelenz,et al.  Identification of the Asparagine Synthase Responsible for d-Asp Amidation in the Lactococcus lactis Peptidoglycan Interpeptide Crossbridge , 2009, Journal of bacteriology.

[26]  M. de Pedro,et al.  Peptidoglycan structure and architecture. , 2008, FEMS microbiology reviews.

[27]  P. Riley,et al.  CORRECTION , 2006, Journal of Clinical Pathology.

[28]  N H Mendelson,et al.  Helical growth of Bacillus subtilis: a new model of cell growth. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Hols,et al.  The biosynthesis and functionality of the cell-wall of lactic acid bacteria , 1999, Antonie van Leeuwenhoek.

[30]  A. L. Koch Orientation of the peptidoglycan chains in the sacculus of Escherichia coli. , 1998, Research in microbiology.

[31]  Ling Wang,et al.  Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. , 2007, Nano letters.

[32]  S. Ehlers,et al.  Tertiary Structure of Bacterial Murein: the Scaffold Model , 2003, Journal of bacteriology.

[33]  S. Ehlers,et al.  Tertiary Structure of Staphylococcus aureus Cell Wall Murein , 2004, Journal of bacteriology.

[34]  E. Brown,et al.  Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms , 2006, Molecular microbiology.

[35]  P. Rouxhet,et al.  Surface of Lactic Acid Bacteria: Relationships between Chemical Composition and Physicochemical Properties , 2000, Applied and Environmental Microbiology.

[36]  Y. Dufrêne,et al.  Direct Observation of Staphylococcus aureus Cell Wall Digestion by Lysostaphin , 2008, Journal of bacteriology.

[37]  J. Errington,et al.  Control of Cell Morphogenesis in Bacteria Two Distinct Ways to Make a Rod-Shaped Cell , 2003, Cell.

[38]  Y. Dufrêne,et al.  Application of X-ray photoelectron spectroscopy to microorganisms , 1994 .

[39]  Yves F Dufrêne,et al.  High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. , 2008, Biophysical journal.

[40]  J. Costerton,et al.  Structure and function of the cell envelope of gram-negative bacteria , 1974, Bacteriological reviews.

[41]  Stéphane Cuenot,et al.  Nanoscale mapping and functional analysis of individual adhesins on living bacteria , 2005, Nature Methods.

[42]  Manfred H. Jericho,et al.  Atomic Force Microscopy of Cell Growth and Division in Staphylococcus aureus , 2004, Journal of bacteriology.

[43]  W. Norde,et al.  X-ray photoelectron spectroscopy analysis of whole cells and isolated cell walls of gram-positive bacteria: comparison with biochemical analysis , 1997, Journal of bacteriology.

[44]  A. Malkin,et al.  In vitro high-resolution structural dynamics of single germinating bacterial spores , 2006, Proceedings of the National Academy of Sciences.

[45]  Y. Dufrêne,et al.  Detection and Localization of Single LysM-Peptidoglycan Interactions , 2008, Journal of bacteriology.

[46]  G. Venema,et al.  Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation , 1995, Journal of bacteriology.

[47]  T J Beveridge,et al.  Bacterial S-layers. , 1999, Trends in microbiology.