Stochastic Multidisciplinary Analysis with High-Dimensional Coupling

This paper presents a novel approach for efficient uncertainty quantification and propagation in multidisciplinary analysis with a large number of coupling variables. The proposed methodology has three elements: Bayesian network, copula-based sampling, and principal component analysis. The Bayesian network represents the joint distribution of multiple variables through marginal distributions and conditional probabilities, and it updates the distributions based on new data. This paper uses this concept to develop a novel approach for probabilistic multidisciplinary analysis, that is, inference of distributions of the coupling variables by enforcing the interdisciplinary compatibility condition (which is treated similar to data for updating). The Bayesian network is built using only a few iterations of the coupled multidisciplinary analysis, without iterating until convergence. A copula-based sampling technique is employed for efficient sampling from the joint and conditional distributions. Further savings ...

[1]  Wei Chen,et al.  Collaborative Reliability Analysis under the Framework of Multidisciplinary Systems Design , 2005 .

[2]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[3]  Sankaran Mahadevan,et al.  Stochastic Multidisciplinary Analysis Under Epistemic Uncertainty , 2015 .

[4]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[5]  S. Mahadevan,et al.  Bayesian Probabilistic Inference for Nonparametric Damage Detection of Structures , 2008 .

[6]  R. Rackwitz,et al.  An efficient numerical solution to the multinormal integral , 1988 .

[7]  Wei Chen,et al.  A System Uncertainty Propagation Approach With Model Uncertainty Quantification in Multidisciplinary Design , 2014, DAC 2014.

[8]  I. H. Abbott,et al.  Theory of Wing Sections: Including a Summary of Airfoil Data , 1959 .

[9]  Sankaran Mahadevan,et al.  Bayesian inference method for model validation and confidence extrapolation , 2009 .

[10]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[11]  John E. Renaud,et al.  Uncertainty quantification using evidence theory in multidisciplinary design optimization , 2004, Reliab. Eng. Syst. Saf..

[12]  Dorota Kurowicka,et al.  Continuous/discrete non parametric Bayesian belief nets with UNICORN and UNINET , 2007 .

[13]  C. Farhat,et al.  Coupled Analytical Sensitivity Analysis and Optimization of Three-Dimensional Nonlinear Aeroelastic Systems , 2001 .

[14]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[15]  Achintya Haldar,et al.  Probability, Reliability and Statistical Methods in Engineering Design (Haldar, Mahadevan) , 1999 .

[16]  Xiaoping Du,et al.  Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design , 2002 .

[17]  Natasha Smith,et al.  Bayesian networks for system reliability reassessment , 2001 .

[18]  John E. Renaud,et al.  Worst case propagated uncertainty of multidisciplinary systems in robust design optimization , 2000 .

[19]  Natasha Smith,et al.  Efficient first-order reliability analysis of multidisciplinary systems , 2006 .

[20]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[21]  P. E. James T. P. Yao,et al.  Probability, Reliability and Statistical Methods in Engineering Design , 2001 .

[22]  Wei Chen,et al.  Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty , 2006 .

[23]  Piotr Breitkopf,et al.  Model reduction for multidisciplinary optimization - application to a 2D wing , 2008 .

[24]  W. M. McKeeman,et al.  Algorithm 145: Adaptive numerical integration by Simpson's rule , 1962, Communications of the ACM.

[25]  Hong-Zhong Huang,et al.  Sequential optimization and reliability assessment for multidisciplinary design optimization under aleatory and epistemic uncertainties , 2009 .

[26]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[27]  Palle Thoft-Christensen,et al.  Reliability Bounds for Structural Systems , 1982 .

[28]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[29]  Sankaran Mahadevan,et al.  Model uncertainty and Bayesian updating in reliability-based inspection , 2000 .

[30]  Panos Y. Papalambros,et al.  Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty , 2006 .

[31]  Roger M. Cooke,et al.  Hybrid Method for Quantifying and Analyzing Bayesian Belief Nets , 2006, Qual. Reliab. Eng. Int..

[32]  K. K. Choi,et al.  Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula , 2009 .

[33]  S. Mahadevan,et al.  Bayesian hierarchical uncertainty quantification by structural equation modeling , 2009 .

[34]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[35]  R. Rackwitz,et al.  First-order concepts in system reliability , 1982 .

[36]  Sankaran Mahadevan,et al.  Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty , 2012 .

[37]  A. M. Hanea,et al.  Non-Parametric Bayesian Belief Nets versus Vines , 2010 .

[38]  Shapour Azarm,et al.  Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation , 2008 .

[39]  R. Nelsen An Introduction to Copulas , 1998 .

[40]  Roger M. Cooke,et al.  Further development of a Causal model for Air Transport Safety (CATS): Building the mathematical heart , 2009, Reliab. Eng. Syst. Saf..

[41]  I. Jolliffe Principal Component Analysis , 2002 .

[42]  Hongzhong Huang,et al.  Design Optimization With Discrete and Continuous Variables of Aleatory and Epistemic Uncertainties , 2009 .

[43]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[44]  O. Ditlevsen Narrow Reliability Bounds for Structural Systems , 1979 .

[45]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[46]  Sankaran Mahadevan,et al.  Validation of reliability computational models using Bayes networks , 2005, Reliab. Eng. Syst. Saf..

[47]  Berthold Schweizer Introduction to Copulas , 2007 .