A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces.

Contact angle hysteresis (CAH) is critical to superhydrophobicity of a surface. This study proposes a free energy thermodynamic analysis (of a 2-D model surface) that significantly simplifies calculations of free energy barrier associated with CAH phenomena. A microtextured surface with pillar structure, typical of one used in experimental studies, is used as an example. We demonstrate that the predicted CAH and equilibrium contact angles are consistent with experimental observations and predictions of Wenzel's and Cassie's equations, respectively. We also establish a criterion for transition between noncomposite and composite wetting states. The results and methodology presented can potentially be used for designing superhydrophobic surfaces.

[1]  A Amirfazli,et al.  Effect of surfactants on wetting of super-hydrophobic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[2]  H. Erbil,et al.  Transformation of a Simple Plastic into a Superhydrophobic Surface , 2003, Science.

[3]  Stephan Herminghaus,et al.  How plants keep dry: a physicist's point of view. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[4]  Abraham Marmur,et al.  The Lotus effect: superhydrophobicity and metastability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[5]  J. Lyklema,et al.  Book review on Applied Surface Thermodynamics, A.W. Neumann and J.K. Spelt (eds.), Marcel Dekker, New York etc., 1996 , 1998 .

[6]  Didem Öner,et al.  Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability , 2000 .

[7]  Neelesh A. Patankar,et al.  Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces , 2003 .

[8]  R. G. Cox The spreading of a liquid on a rough solid surface , 1983, Journal of Fluid Mechanics.

[9]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[10]  P. Roura,et al.  Comment on “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces” , 2002 .

[11]  Neelesh A. Patankar,et al.  On the Modeling of Hydrophobic Contact Angles on Rough Surfaces , 2003 .

[12]  Chun Huh,et al.  Effects of surface roughness on wetting (theoretical) , 1977 .

[13]  Jin Zhai,et al.  Super-hydrophobic surfaces: From natural to artificial , 2002 .

[14]  Dongqing Li,et al.  Surface heterogeneity and contact angle hysteresis , 1992 .

[15]  A. Fujishima,et al.  Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces , 2000 .

[16]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[17]  R. H. Dettre,et al.  Contact Angle Hysteresis: I. Study of an Idealized Rough Surface , 1964 .

[18]  Kazuhito Hashimoto,et al.  Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets , 2002 .

[19]  C. Extrand,et al.  Criteria for ultralyophobic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[20]  R. H. Dettre,et al.  Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface , 1964 .

[21]  Zhiqun Lin,et al.  A Rapid Route to Arrays of Nanostructures in Thin Films , 2002 .

[22]  Gareth H. McKinley,et al.  Superhydrophobic Carbon Nanotube Forests , 2003 .

[23]  Y. Zhao,et al.  Water contact angles of vertically aligned Si nanorod arrays , 2004 .

[24]  S. G. Mason,et al.  The Apparent Contact Angle of Liquids on Finely-Grooved Solid Surfaces-A SEM Study , 1976 .

[25]  L. Schwartz,et al.  Contact angle hysteresis on heterogeneous surfaces , 1985 .

[26]  David Quéré,et al.  Surface chemistry: Fakir droplets. , 2002, Nature materials.

[27]  C. Extrand,et al.  Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces , 2002 .

[28]  R. Good,et al.  Thermodynamics of contact angles. I. Heterogeneous solid surfaces , 1972 .

[29]  Abraham Marmur,et al.  Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? , 2003 .