Assessing stochastic algorithms for large scale nonlinear least squares problems using extremal probabilities of linear combinations of gamma random variables

This paper considers stochastic algorithms for efficiently solving a class of large scale nonlinear least squares (NLS) problems which frequently arise in applications. We propose eight variants of a practical randomized algorithm where the uncertainties in the major stochastic steps are quantified. Such stochastic steps involve approximating the NLS objective function using Monte Carlo methods, and this is equivalent to the estimation of the trace of corresponding symmetric positive semidefinite matrices. For the latter, we prove tight necessary and \sufficient conditions on the sample size (which translates to cost) to satisfy the prescribed probabilistic accuracy. We show that these conditions are practically computable and yield small sample sizes. They are then incorporated in our stochastic algorithm to quantify the uncertainty in each randomized step. The bounds we use are applications of more general results regarding extremal tail probabilities of linear combinations of gamma distributed random v...

[1]  Uri M. Ascher,et al.  Stochastic Algorithms for Inverse Problems Involving PDEs and many Measurements , 2014, SIAM J. Sci. Comput..

[2]  Per Christian Hansen,et al.  Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank , 1990, SIAM J. Sci. Comput..

[3]  E. Haber,et al.  The lost honor of ℓ2-based regularization , 2013 .

[4]  Eldad Haber,et al.  Simultaneous Source for non-uniform data variance and missing data , 2014, ArXiv.

[5]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[6]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[7]  Huabei Jiang,et al.  Quantitative photoacoustic tomography , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Max Deffenbaugh,et al.  Efficient Seismic Forward Modeling and Acquisition using Simultaneous Random Sources and Sparsity , .

[9]  G. Papanicolaou,et al.  High-contrast impedance tomography , 1996 .

[10]  E. Haber,et al.  Adaptive finite volume method for distributed non-smooth parameter identification , 2007 .

[11]  Uri M. Ascher,et al.  Adaptive and Stochastic Algorithms for Electrical Impedance Tomography and DC Resistivity Problems with Piecewise Constant Solutions and Many Measurements , 2012, SIAM J. Sci. Comput..

[12]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[13]  U. Ascher,et al.  Adaptive and stochastic algorithms for EIT and DC resistivity problems with piecewise constant solutions and many measurements , 2011 .

[14]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[15]  S. Arridge Optical tomography in medical imaging , 1999 .

[16]  S. Osher,et al.  Quantitative Photoacoustic Tomography , 2012 .

[17]  Sivan Toledo,et al.  Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix , 2011, JACM.

[18]  Andy Adler,et al.  Total Variation Regularization in Electrical Impedance Tomography , 2007 .

[19]  F. Herrmann,et al.  Compressive simultaneous full-waveform simulation , 2009 .

[20]  Denis Ridzal,et al.  An Application of Random Projection to Parameter Estimation in Partial Differential Equations , 2012, SIAM J. Sci. Comput..

[21]  G. Székely,et al.  Extremal probabilities for Gaussian quadratic forms , 2003 .

[22]  Uri M. Ascher,et al.  Data completion and stochastic algorithms for PDE inversion problems with many measurements , 2013, ArXiv.

[23]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[24]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[25]  Eldad Haber,et al.  An Effective Method for Parameter Estimation with PDE Constraints with Multiple Right-Hand Sides , 2012, SIAM J. Optim..

[26]  U. Ascher,et al.  Dynamic level set regularization for large distributed parameter estimation problems , 2007 .

[27]  Qiang Wang,et al.  Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media , 2007, SPIE BiOS.

[28]  Nariida C. Smith,et al.  Two-Dimensional DC Resistivity Inversion for Dipole-Dipole Data , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[30]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[31]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[32]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[33]  Douglas W. Oldenburg,et al.  Three dimensional inversion of multisource time domain electromagnetic data , 2013 .

[34]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[35]  E. Miller,et al.  A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets , 2000 .

[36]  T. Chan,et al.  Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .

[37]  E. Haber,et al.  RESINVM3D: A 3D resistivity inversion package , 2007 .

[38]  Uri M. Ascher,et al.  Improved Bounds on Sample Size for Implicit Matrix Trace Estimators , 2013, Found. Comput. Math..

[39]  Eric L. Miller,et al.  Imaging the body with diffuse optical tomography , 2001, IEEE Signal Process. Mag..

[40]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .