Evolution of artificial disturbances in swept wing supersonic boundary layer

Experimental data on the evolution of artificial controlled travelling disturbances in a three-dimensional supersonic boundary layer on a 45° swept wing at Mach number 2.0 is presented. Artificial disturbances were introduced in the boundary layer using a periodical glow discharge with a frequency of 20 kHz. Pulsations of the boundary layer were measured with a constant-temperature hot-wire anemometer and the probe moved parallel and not parallel to the leading edge of the model. In both cases spatial-temporal and spectral-wave characteristics of the wave train development were obtained and quantitatively compared with each other. This paper discusses the suitability of the method for measuring fluctuations fields when the probe is moving not parallel to the leading edge of the model.