Tunable laser techniques for improving the precision of observational astronomy

Improving the precision of observational astronomy requires not only new telescopes and instrumentation, but also advances in observing protocols, calibrations and data analysis. The Laser Applications Group at the National Institute of Standards and Technology in Gaithersburg, Maryland has been applying advances in detector metrology and tunable laser calibrations to problems in astronomy since 2007. Using similar measurement techniques, we have addressed a number of seemingly disparate issues: precision flux calibration for broad-band imaging, precision wavelength calibration for high-resolution spectroscopy, and precision PSF mapping for fiber spectrographs of any resolution. In each case, we rely on robust, commercially-available laboratory technology that is readily adapted to use at an observatory. In this paper, we give an overview of these techniques.

[1]  George P Eppeldauer,et al.  Facility for spectral irradiance and radiance responsivity calibrations using uniform sources. , 2006, Applied optics.

[2]  W. Wood-Vasey,et al.  CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE , 2012, 1205.4493.

[3]  Robert L. Byer,et al.  Introduction: Optical parametric oscillation and amplification , 1993 .

[4]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[5]  Gautham Narayan,et al.  PRECISE THROUGHPUT DETERMINATION OF THE PanSTARRS TELESCOPE AND THE GIGAPIXEL IMAGER USING A CALIBRATED SILICON PHOTODIODE AND A TUNABLE LASER: INITIAL RESULTS , 2010, 1003.3465.

[6]  Thomas C. Larason,et al.  Spectroradiometric Detector Measurements: Ultraviolet, Visible, and Near-Infrared Detectors for Spectral Power , 2008 .

[7]  Harland W. Epps,et al.  Hectochelle: A Multiobject Optical Echelle Spectrograph for the MMT , 2011 .

[8]  Steven W. Brown,et al.  Stray Light Correction of the Marine Optical System , 2009 .

[9]  David J. Schlegel,et al.  Spectro-Perfectionism: An Algorithmic Framework for Photon Noise-Limited Extraction of Optical Fiber Spectroscopy , 2009, 0911.2689.

[10]  Xiaoxiong Xiong,et al.  Results from solar reflective band end-to-end testing for VIIRS F1 sensor using T-SIRCUS , 2011, Optical Engineering + Applications.

[11]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[12]  Steven W. Brown,et al.  Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (SIRCUS) facility at NIST , 2004, SPIE Optics + Photonics.

[13]  Steven W. Brown,et al.  Spectroradiometric calibration of telescopes using laser illumination of flat field screens , 2010, Astronomical Telescopes + Instrumentation.

[14]  J. E. Hardis,et al.  The NIST Detector-Based Luminous Intensity Scale , 1996, Journal of research of the National Institute of Standards and Technology.

[15]  Yuqin Zong,et al.  Simple spectral stray light correction method for array spectroradiometers. , 2006, Applied optics.

[16]  Joseph P. Rice,et al.  NIST reference cryogenic radiometer designed for versatile performance , 2006 .

[17]  D. Clark,et al.  Stray light correction algorithm for multichannel hyperspectral spectrographs. , 2012, Applied optics.

[18]  Christopher W. Stubbs,et al.  Toward 1% Photometry: End-to-End Calibration of Astronomical Telescopes and Detectors , 2006, astro-ph/0604285.

[19]  V. A. Dzuba,et al.  Space-Time Variation of Physical Constants and Relativistic Corrections in Atoms , 1999 .

[20]  D. Eisenstein,et al.  The Baryon Oscillation Spectroscopic Survey: Precision measurements of the absolute cosmic distance scale , 2009, 0902.4680.