Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland

[1]  G. Hernández,et al.  Arsenic cycling within the water column of a small lake receiving contaminated ground-water discharge , 2006 .

[2]  L. Charlet,et al.  Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite , 2005 .

[3]  R. Root,et al.  The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Bostick,et al.  Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. , 2004, Environmental science & technology.

[5]  G. Chaillou,et al.  The behaviour of arsenic in muddy sediments of the Bay of Biscay (France) , 2003 .

[6]  S. Spring,et al.  Biogeochemical transformations of arsenic in circumneutral freshwater sediments , 2003, Biodegradation.

[7]  R. Wilkin,et al.  Speciation of arsenic in sulfidic waters , 2003, Geochemical transactions.

[8]  B. Bostick,et al.  Arsenite sorption on troilite (FeS) and pyrite (FeS2) , 2003 .

[9]  R. Wilkin,et al.  Use of hydrochloric acid for determinining solid-phase arsenic partitioning in sulfidic sediments. , 2002, Environmental science & technology.

[10]  Archana Sharma,et al.  Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. , 2002, Water research.

[11]  H. Nesbitt,et al.  XPS evidence for Fe and As oxidation states and electronic states in loellingite (FeAs2) , 2002 .

[12]  F. Livens,et al.  Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. , 2002, Environmental science & technology.

[13]  M. Böttcher,et al.  Trace metals in Holocene coastal peats and their relation to pyrite formation (NW Germany) , 2002 .

[14]  Anthony Oldroyd,et al.  A novel iron sulphide mineral switch and its implications for Earth and planetary science , 2001 .

[15]  J. Hering,et al.  Behavior of Arsenic and Other Redox-Sensitive Elements in Crowley Lake, CA: A Reservoir in the Los Angeles Aqueduct System , 2000 .

[16]  P. Gschwend,et al.  Fate of Benzene in a Stratified Lake Receiving Contaminated Groundwater Discharges from a Superfund Site , 2000 .

[17]  G. Waychunas,et al.  Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California , 2000 .

[18]  M. Lucotte,et al.  The Differential Geochemical Behavior of Arsenic and Phosphorus in the Water Column and Sediments of the Saguenay Fjord Estuary, Canada , 2000 .

[19]  S. Fendorf,et al.  Arsenic Speciation, Seasonal Transformations, and Co-distribution with Iron in a Mine Waste-Influenced Palustrine Emergent Wetland , 2000 .

[20]  H. Barnes,et al.  Reaction pathways in the Fe-S system below 100°C , 2000 .

[21]  Isabelle Saulnier,et al.  Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada , 2000 .

[22]  T. Lyons,et al.  Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations: Examples from Effingham Inlet, Orca Basin, and the Black Sea , 1999 .

[23]  J. Penner‐Hahn,et al.  Oxidation state of gold and arsenic in gold-bearing arsenian pyrite , 1999 .

[24]  J. Morse Sulfides in Sandy Sediments: New Insights on the Reactions Responsible for Sedimentary Pyrite Formation , 1999 .

[25]  S. Dahle,et al.  Arsenic and other Trace Metals in Sediments from the Kara Sea and the Ob and Yenisey Estuaries, Russia , 1998 .

[26]  P. Gschwend,et al.  Source and chemodynamic behavior of diphenyl sulfone and ortho- and para-hydroxybiphenyl in a small lake receiving discharges from an adjacent Superfund Site , 1998 .

[27]  T. Ressler WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. , 1998, Journal of synchrotron radiation.

[28]  R. Carignan,et al.  Geochemistry of trace metals associated with reduced sulfur in freshwater sediments , 1998 .

[29]  J. Saunders,et al.  Geochemistry of biogenic pyrite and ferromanganese coatings from a small watershed: A bacterial connection? , 1997 .

[30]  David J. Vaughan,et al.  Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study , 1997 .

[31]  H. Barnes,et al.  Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species , 1996 .

[32]  A. K. Davis,et al.  Bioaccumulation of arsenic, chromium and lead in fish: constraints imposed by sediment geochemistry , 1996 .

[33]  R. Aller,et al.  Diagenetic cycling of arsenic in Amazon shelf sediments , 1996 .

[34]  J. Ingri,et al.  Early diagenesis of arsenic in sediments of the Kalix River estuary, northern Sweden , 1995 .

[35]  C. Gagnon,et al.  Anomalous accumulation of acid-volatile sulphides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada , 1995 .

[36]  J. D. Robertson,et al.  Micro-PIXE analysis of framboidal pyrite and associated maceral types in oil shale , 1995 .

[37]  J. Morse Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability , 1994 .

[38]  B. Atkin,et al.  The determination of total sulphur in geological materials by coulometric titration , 1994 .

[39]  J. Morse,et al.  Pyritization of trace metals in anoxic marine sediments , 1992 .

[40]  L. Eary The solubility of amorphous As2S3 from 25 to 90°C , 1992 .

[41]  J. Morse,et al.  Interactions of divalent cations with the surface of pyrite , 1991 .

[42]  Martin A. A. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C , 1991 .

[43]  J. Middelburg Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia , 1991 .

[44]  D. Canfield Reactive iron in marine sediments. , 1989, Geochimica et cosmochimica acta.

[45]  D. Postma,et al.  Pyrite formation in anoxic environments of the Baltic , 1988 .

[46]  Johnnie N. Moore,et al.  Partitioning of arsenic and metals in reducing sulfidic sediments , 1988 .

[47]  D. Ronen,et al.  An In Situ Multilevel Sampler for Preventive Monitoring and Study of Hydrochemical Profiles in Aquifers , 1987 .

[48]  J. G. Sanders,et al.  The effect of biological and physical disturbances on the transport of arsenic from contaminated estuarine sediments , 1987 .

[49]  W. H. Patrick,et al.  Fixation, transformation, and mobilization of arsenic in sediments. , 1987, Environmental science & technology.

[50]  H. Edenborn,et al.  Observations on the diagenetic behavior of arsenic in a deep coastal sediment , 1986 .

[51]  M. Goldhaber,et al.  An analytical scheme for determining forms of sulphur in oil shales and associated rocks. , 1986, Talanta.

[52]  N. Belzile,et al.  Capture of arsenic by pyrite in near-shore marine sediments , 1986 .

[53]  D. Canfield,et al.  The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales , 1986 .

[54]  J. Chanton,et al.  The effects of heat and stannous chloride addition on the active distillation of acid volatile sulfide from pyrite-rich marine sediment samples , 1985 .

[55]  S. Emerson,et al.  Partitioning and transport of metals across the O2H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway☆ , 1985 .

[56]  J. Aggett,et al.  Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri. , 1985, Environmental science & technology.

[57]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[58]  M. L. Peterson,et al.  Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic fjord , 1983 .

[59]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[60]  R. Raiswell,et al.  The incorporation of trace elements into pyrite during diagenesis of black shales, Yorkshire, England , 1980 .

[61]  A. Tessier,et al.  Sequential extraction procedure for the speciation of particulate trace metals , 1979 .

[62]  J. Ostwald,et al.  The relationship between euhedral and framboidal pyrite in base-metal sulphide ores , 1979, Mineralogical Magazine.

[63]  E. Huffman Performance of a new automatic carbon dioxide coulometer , 1977 .

[64]  R. Mccready Sulphur isotope fractionation by Desulfovibrio and Desulfotomaculum species , 1975 .

[65]  Li Yuan-hui,et al.  Diffusion of ions in sea water and in deep-sea sediments , 1974 .

[66]  J. Hoefs Stable Isotope Geochemistry , 2015 .

[67]  C. Su,et al.  Arsenate and arsenite sorption on and arsenite oxidation by iron(II, III) hydroxycarbonate green rust , 2005 .

[68]  D. Kirk Nordstrom,et al.  Arsenic thermodynamic data and environmental geochemistry , 2003 .

[69]  K. G. Stollenwerk,et al.  Arsenic in ground water , 2003 .

[70]  D. Canfield Biogeochemistry of Sulfur Isotopes , 2001 .

[71]  P Quevauviller,et al.  Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. , 1999, Journal of environmental monitoring : JEM.

[72]  M. Schoonen,et al.  Chemistry of iron sulfides in sedimentary environments , 1995 .

[73]  A. Tessier,et al.  Interactions between arsenic and iron oxyhydroxides in lacustrine sediments , 1990 .

[74]  M. L. Pierce,et al.  Adsorption of arsenite and arsenate on amorphous iron hydroxide , 1982 .

[75]  P. G. Hill,et al.  A Fundamental Equation of State for Heavy Water , 1982 .

[76]  Robert A. Berner,et al.  Early Diagenesis: A Theoretical Approach , 1980 .

[77]  L. A. Chambers,et al.  Microbiological fractionation of stable sulfur isotopes: A review and critique , 1979 .

[78]  J. Craig,et al.  Mineral chemistry of metal sulfides , 1978 .