Chalcogenide Glass Thin-Film and Fiber Structures for Chemical and Biological Sensing

10.1 INTRODUCTION Chalcogenide glasses (ChGs) are well known for their high infrared (IR) transparency and amenability to fabrication in fiber and thin film forms, which makes them attractive candidates for mid-IR optical chemical and biological sensors. This chapter describes recent advances in the production of sensing devices from a variety of thin film and fiber structures, highlighting the critical materials parameters needed for achieving low loss, high detectivity operation. Because the sensitivity of chemical sensors in thin-film and fiber form is typically directly related to some physical characteristic, such as optical path length, which is much higher in these low-dimension structures than that of the associated bulk glass optics, the physical form of the sensor ultimately dictates or influences the required material properties such as optical loss, viscosity, or coefficient of thermal expansion. Sections 10.2 and 10.3 will review the functionality of ChGs in thin film and fiber sensing applications, with a focus on how this functionality is impacted by the choice of ChG constituents. The strengths and drawbacks of these sensing approaches will be discussed, as some ChG compositions are well-known for limited chemical and temperature stability, as well as high photosensitivity, which can make them excellent candidate material systems for use in some sensing regimes and environments, but preclude their use in other applications. Having outlined the required material characteristics necessary for these sensing applications, the discussion in Section 10.4 will then turn to compositional design approaches used to obtain these characteristics using multi-component ChGs. Varying elemental compositions can be used to tailor glass optical and thermal properties to meet design challenges; however these properties are tightly correlated and so the problem becomes one of global, rather than individual, optimization in the parameter space of interest. This chapter concludes with a brief discussion of the conclusions of the present review, as well as the future directions the authors see this exciting field expanding to include.

[1]  G. Rao,et al.  External cavity tunable quantum cascade lasers and their applications to trace gas monitoring. , 2011, Applied optics.

[2]  Mingde Zhu,et al.  Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users. , 2006, Analytical biochemistry.

[3]  Itaru Yokohama,et al.  Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre , 1996 .

[4]  A. Katzir,et al.  Theory of fiber-optic, evanescent-wave spectroscopy and sensors. , 1996, Applied optics.

[5]  Andrea M. Armani,et al.  Bioconjugation Strategies for Microtoroidal Optical Resonators , 2010, Sensors.

[6]  R. Decorby,et al.  Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings. , 2008, Optics express.

[7]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[8]  Florent Colas,et al.  Chalcogenide Glass Optical Waveguides for Infrared Biosensing , 2009, Sensors.

[9]  R. Klein Chalcogenide glasses as passive thin film structures for integrated optics , 1974 .

[10]  R. Decorby,et al.  Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings. , 2007, Optics express.

[11]  L. Kimerling,et al.  On-chip Si-based Bragg cladding waveguide with high index contrast bilayers. , 2004, Optics express.

[12]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[13]  Chung-Yen Chao,et al.  Design and optimization of microring resonators in biochemical sensing applications , 2006, Journal of Lightwave Technology.

[14]  Abdolnasser Zakery Low loss waveguides in pulsed laser deposited arsenic sulfide chalcogenide films , 2002 .

[15]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[16]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[17]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[18]  I D Aggarwal,et al.  Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers. , 1994, Applied optics.

[19]  Douglas B. Leviton,et al.  Temperature-dependent refractive index of silicon and germanium , 2006, SPIE Astronomical Telescopes + Instrumentation.

[20]  Jean-Luc Adam,et al.  Chalcogenide Glass Fibers for Infrared Sensing and Space Optics , 2009 .

[21]  André Conjusteau,et al.  Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution. , 2006, Optics express.

[22]  T. Lee,et al.  Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper. , 2009, Optics letters.

[23]  B. Luther-Davies,et al.  Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography , 2007 .

[24]  Michal Lipson,et al.  On-chip spectrophotometry for bioanalysis using microring resonators , 2011, Biomedical optics express.

[25]  C. Madsen,et al.  Vertically integrated As2S3 ring resonator on LiNbO3. , 2009, Optics letters.

[26]  A. Sharma,et al.  Surface plasmon resonance-based gas sensor with chalcogenide glass and bimetallic alloy nanoparticle layer , 2009 .

[27]  Barry Luther-Davies,et al.  Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching. , 2004, Optics express.

[28]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[29]  W. Lacourse,et al.  A study of high-strength arsenic triselenide glass fibers , 1993 .

[30]  Bruno Bureau,et al.  Development of Far‐Infrared‐Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics , 2007 .

[31]  William W. Bewley,et al.  Interband cascade laser emitting at λ=3.75μm in continuous wave above room temperature , 2008 .

[32]  N Ponnampalam,et al.  Guided self-assembly of integrated hollow Bragg waveguides. , 2007, Optics express.

[33]  M. Riley,et al.  Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors. , 2010, Optics express.

[34]  S. Pau,et al.  Integrated waveguide with a microfluidic channel in spiral geometry for spectroscopic applications , 2007 .

[35]  S. Suzuki,et al.  On the Decrease of Fatigue Limit Due to Small Prestrain , 1992 .

[36]  Richard K. Brow,et al.  Journal of the American Ceramic Society: Introduction , 2002 .

[37]  T. Ueda,et al.  Measurement of Grinding Temperature of Ceramics Using Infrared Radiation Pyrometer with Optical Fiber , 1992 .

[38]  L.J. Guo,et al.  Polymer microring resonators for biochemical sensing applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  J. Adam,et al.  Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor , 2003 .

[40]  E. M. Dianov,et al.  High-purity chalcogenide glasses for fiber optics , 2009 .

[41]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[42]  Trevor M. Benson,et al.  Fine embossing of chalcogenide glasses - : a new fabrication route for photonic integrated circuits , 2006 .

[43]  J. David Musgraves,et al.  Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system , 2011 .

[44]  Laurence S. Rothman,et al.  Journal of Quantitative Spectroscopy & Radiative Transfer 96 , 2005 .

[45]  J Lucas,et al.  Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis. , 2004, Journal of biomedical optics.

[46]  Tomas Kohoutek,et al.  Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. , 2009, Optics letters.

[47]  Jean-Luc Adam,et al.  Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy , 2009 .

[48]  James R. Varner,et al.  Density and microhardness of As Se glasses and glass fibers , 1997 .

[49]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[50]  Colette McDonagh,et al.  Optical chemical sensors. , 2008, Chemical reviews.

[51]  C. Rowlands,et al.  Rapid prototyping of low-loss IR chalcogenide-glass waveguides by controlled remelting. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[52]  Trevor M. Benson,et al.  Fine embossing of chalcogenide glasses: First time submicron definition of surface embossed features , 2007 .

[53]  N. S. Kapany,et al.  Recent developments in infrared fiber optics , 1965 .

[54]  Kathleen Richardson,et al.  Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.

[55]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[56]  Moti Katz,et al.  Attenuated total reflection spectroscopy with chalcogenide bitapered fibers , 1992, Other Conferences.

[57]  Jasbinder S. Sanghera,et al.  Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers , 2004 .

[58]  Tigran Galstian,et al.  Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses , 1999 .

[59]  M Shichiri,et al.  Non-invasive blood glucose measurement by Fourier transform infrared spectroscopic analysis through the mucous membrane of the lip: application of a chalcogenide optical fiber system. , 1999, Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering.

[60]  Rosaleen J. Anderson,et al.  Organic Spectroscopic Analysis , 2004 .

[61]  B. Eggleton,et al.  Higher-order mode grating devices in AS2S3 chalcogenide glass rib waveguides , 2007 .

[62]  Juejun Hu,et al.  Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. , 2010, Optics express.

[63]  L. Kimerling,et al.  Sharp Bending of On-Chip Silicon Bragg Cladding Waveguide With Light Guiding in Low Index Core Materials , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[64]  Alisa Rudnitskaya,et al.  Electronic tongues and their analytical application , 2002, Analytical and bioanalytical chemistry.

[65]  Steve Madden,et al.  Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam. , 2005, Optics express.

[66]  A. Sharma,et al.  Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region , 2009 .

[67]  W. Lacourse,et al.  Tensile Strengths of Se, As2S3, As2Se3, and Ge30As15Se55 Glass Fibers , 1989 .

[68]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[69]  O. Wolfbeis Fiber-optic chemical sensors and biosensors. , 2004, Analytical chemistry.

[70]  Tomas Wagner,et al.  Spin-coated Ag x (As 0.33 S 0.67 ) 100−x films: preparation and structure , 2003 .

[71]  Takashi Yamagishi,et al.  Coherent infrared fiber image bundle , 1991 .

[72]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[73]  J Lucas,et al.  Infrared single mode chalcogenide glass fiber for space. , 2007, Optics express.

[74]  Steven G. Johnson,et al.  Dispersion tailoring and compensation by modal interactions in OmniGuide fibers. , 2003, Optics express.

[75]  Ishwar D. Aggarwal,et al.  Infrared Evanescent Absorption Spectroscopy of Toxic Chemicals Using Chalcogenide Glass Fibers , 1995 .

[76]  Joseph Maria Kumar Irudayaraj,et al.  Detection and fingerprinting of pathogens : Mid-IR biosensor using amorphous chalcogenide films , 2008 .

[77]  P. Rolfe,et al.  Advances in fibre-optic sensing in medicine and biology , 2007 .

[78]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[79]  J N McMullin,et al.  Chip-scale spectrometry based on tapered hollow Bragg waveguides. , 2009, Optics express.

[80]  María Espinosa Bosch,et al.  Recent Development in Optical Fiber Biosensors , 2007, Sensors (Basel, Switzerland).

[81]  M. Lipson,et al.  On-chip gas detection in silicon optical microcavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[82]  Steve Madden,et al.  Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. , 2010, Optics express.

[83]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[84]  C. Rowlands,et al.  Investigating the response of As2S3-based SERS substrates , 2010 .

[85]  R. Sooryakumar,et al.  Direct write of optical waveguides on chalcogenide thin films using electron beams , 2009 .

[86]  Olivier Sire,et al.  Chalcogenide glass fibers used as biosensors , 2003 .

[87]  Virginie Nazabal,et al.  CO2 Detection Using Microstructured Chalcogenide Fibers , 2009 .

[88]  Steve Madden,et al.  Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals. , 2009, Optics letters.

[89]  P. R. Webber Some physical properties of Ge_As_Se infrared optical glasses , 1976 .

[90]  H.T. Nguyen,et al.  High index contrast waveguides in chalcogenide glass and polymer , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[91]  A. Rogalski Infrared detectors: status and trends , 2003 .

[92]  Steve Madden,et al.  Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating. , 2011, Optics express.

[93]  Terutoshi Kanamori,et al.  Chalcogenide glass fibers for mid-infrared transmission , 1984 .

[94]  M D Pelusi,et al.  Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration. , 2007, Optics express.

[95]  C. Waits,et al.  Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning , 2009 .

[96]  Muzammil Iqbal,et al.  Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[97]  Steve Madden,et al.  Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides , 2007 .

[98]  A. Owen,et al.  Chalcogenide glasses as ion-selective materials for solid-state electrochemical sensors , 1980 .

[99]  Jean-Luc Adam,et al.  A new approach of preform fabrication for chalcogenide fibers , 2003 .

[100]  Design considerations for surface plasmon resonance based detection of human blood group in near infrared , 2010 .

[101]  Vittorio M. N. Passaro,et al.  Guided-Wave Optical Biosensors , 2007, Sensors (Basel, Switzerland).

[102]  A. Owen,et al.  Optical properties of spin-coated amorphous chalcogenide thin films , 1987 .

[103]  Marin Soljacic,et al.  Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications , 2004 .

[104]  Olivier Sire,et al.  Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans. , 2009, Journal of biomedical optics.

[105]  A. Kolobov,et al.  Photodoping of amorphous chalcogenides by metals , 1991 .

[106]  S. Nie,et al.  Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. , 2008, Chemical Society reviews.

[107]  Jean-Marc Fédéli,et al.  Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays. , 2010, Optics express.

[108]  M. Zahniser,et al.  Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer , 2002 .

[109]  Steve Madden,et al.  Progress in optical waveguides fabricated from chalcogenide glasses. , 2010, Optics express.

[110]  Paul Lambeck,et al.  Integrated optical sensors for the chemical domain , 2001 .

[111]  I. Vurgaftman,et al.  Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. , 2011, Nature communications.

[112]  Kathleen Richardson,et al.  Towards universal enrichment nanocoating for IR-ATR waveguides. , 2011, Chemical communications.

[113]  Johann Troles,et al.  Recent advances in chalcogenide glasses , 2004 .

[114]  P. Shankar,et al.  A review of fiber-optic biosensors , 2007 .

[115]  Olivier Sire,et al.  Infrared glass fibers for in-situ sensing, chemical and biochemical reactions , 2002 .

[116]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[117]  Olivier Sire,et al.  Mapping Bacterial Surface Population Physiology in Real-Time: Infrared Spectroscopy of Proteus Mirabilis Swarm Colonies , 2006, Applied spectroscopy.

[118]  H. Lüth,et al.  Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions , 2001 .

[119]  Joseph Irudayaraj,et al.  Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films. , 2006, Analytical chemistry.

[120]  Daniel W. Hewak,et al.  Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler , 2011, Defense + Commercial Sensing.

[121]  Guangming Tao,et al.  Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires. , 2011, Nano letters.

[122]  Zheng Wang,et al.  Ovonic Memory Switching in Multimaterial Fibers , 2011 .

[123]  B.,et al.  Surface plasmon resonance in chalcogenide glass-based optical system , 2008 .

[124]  Jacques Lucas,et al.  A Family of Far‐Infrared‐Transmitting Glasses in the Ga–Ge–Te System for Space Applications , 2006 .

[125]  Hongtao Lin,et al.  Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[126]  P. B. Macedo,et al.  Intrinsic and impurity infrared absorption in As2Se3 glass , 1975 .

[127]  Chalcogenide Fibre Displacement Sensor , 2001 .

[128]  D. Gill,et al.  Optical sensing of biomolecules using microring resonators , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[129]  G. Chern,et al.  Spin‐coated amorphous chalcogenide films , 1982 .

[130]  Zheng Wang,et al.  Fiber Field‐Effect Device Via In Situ Channel Crystallization , 2010, Advanced materials.

[131]  S. Shaji,et al.  NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline--a conformational structural analysis using local mode model. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[132]  Walter Huber,et al.  Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. , 2006, Current pharmaceutical design.

[133]  Zheng Wang,et al.  Fiber-optic technologies in laser-based therapeutics: threads for a cure. , 2010, Current pharmaceutical biotechnology.

[134]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[135]  T. Barwicz,et al.  Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides , 2005, Journal of Lightwave Technology.

[137]  Ofer Shapira,et al.  Large-scale optical-field measurements with geometric fibre constructs , 2006, Nature materials.

[138]  Jean-Luc Adam,et al.  Infrared fibers based on Te–As–Se glass system with low optical losses , 2004 .

[139]  G. Whitesides,et al.  Fabrication of three‐dimensional micro‐structures: Microtransfer molding , 1996 .

[140]  Bruno Bureau,et al.  Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing , 2011 .

[141]  Tim Lincoln,et al.  Chemical communications , 1992, Nature.

[142]  Graham M. Gibson,et al.  Field-portable laser-diode spectrometer for the ultra-sensitive detection of hydrocarbon gases , 2002, SPIE Optics + Photonics.

[143]  Applied Spectroscopy , 2010 .

[144]  D. Richardson,et al.  Developing holey fibres for evanescent field devices , 1999 .

[145]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[146]  A. Hall Applied Optics. , 2022, Science.

[147]  Takashi Yamagishi,et al.  Recent advances and trends in chalcogenide glass fiber technology: a review , 1992 .

[148]  Jasbinder S. Sanghera,et al.  Infrared-transmitting fiber optics for biomedical applications , 1999, Photonics West - Biomedical Optics.

[149]  J.S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[150]  C. Pantano,et al.  Fabrication of two-dimensional photonic crystals in a chalcogenide glass , 2009 .

[151]  A. Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2004 .

[152]  B. Liedberg,et al.  Biosensing with surface plasmon resonance--how it all started. , 1995, Biosensors & bioelectronics.

[153]  Y. Guéguen,et al.  Optical microfabrication of tapers in low-loss chalcogenide fibers , 2010 .

[154]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[155]  Kathleen Richardson,et al.  Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges. , 2010, Optics express.

[156]  Keijiro Suzuki,et al.  Fabrication and Characterization of Chalcogenide Glass Photonic Crystal Waveguides References and Links , 2022 .

[157]  A Katzir,et al.  Quantitative evaluation of chalcogenide glass fiber evanescent wave spectroscopy. , 1994, Applied optics.

[158]  A. Leinse,et al.  Ultra-low-loss high-aspect-ratio Si3N4 waveguides. , 2011, Optics express.

[159]  Olivier Sire,et al.  IR optical fiber sensor for biomedical applications , 2003 .

[161]  Victor G. Plotnichenko,et al.  Middle-infrared chalcogenide glass fibers with losses lower than 100 db km−1 , 1989 .

[162]  W. Verboom,et al.  Optical sensing systems for microfluidic devices: a review. , 2007, Analytica chimica acta.

[163]  Fatima Toor,et al.  Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits. , 2010, Optics letters.

[164]  E. M. Dianov,et al.  Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics , 2011 .

[165]  Boris Mizaikoff,et al.  Miniaturized mid-infrared sensor technologies , 2008, Analytical and bioanalytical chemistry.

[166]  Jean-Luc Adam,et al.  Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization , 2009 .

[167]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[168]  Juejun Hu,et al.  Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis , 2009, Journal of Lightwave Technology.

[169]  Steve Madden,et al.  Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities. , 2010, Optics express.

[170]  Candice Tsay,et al.  Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared. , 2010, Optics letters.

[171]  P. Fauchet,et al.  Two-dimensional silicon photonic crystal based biosensing platform for protein detection. , 2007, Optics express.

[172]  Bruno Bureau,et al.  Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers , 2004 .

[173]  L. Brilland,et al.  Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources. , 2010, Optics express.

[174]  Jasbinder S. Sanghera,et al.  Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. , 2010, Optics express.

[175]  Joseph Maria Kumar Irudayaraj,et al.  Planar chalcogenide glass waveguides for IR evanescent wave sensors , 2006 .

[176]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[177]  Mark A. Druy,et al.  In Situ FT-IR Analysis of a Composite Curing Reaction Using a Mid-Infrared Transmitting Optical Fiber , 1988 .

[178]  Angela B. Seddon,et al.  Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers , 2008 .

[179]  Bruno Bureau,et al.  Evaluation of Toxic Agent Effects on Lung Cells by Fiber Evanescent Wave Spectroscopy , 2005, Applied spectroscopy.

[180]  Manijeh Razeghi,et al.  Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency , 2008 .

[181]  Franz R. Aussenegg,et al.  Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .

[182]  Jacques Lucas,et al.  Infrared chalcogen glasses: chemical polishing and fibre remote spectroscopy , 2001 .

[183]  J. Nishii,et al.  Chalcogenide glass fiber with a core-cladding structure. , 1989, Applied optics.

[184]  J. Shephard,et al.  Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. , 2005, Optics express.

[185]  W. Yoo,et al.  Chalcogenide optical fiber based sensor for non-invasive monitoring of respiration , 2009, 2009 IEEE Symposium on Industrial Electronics & Applications.

[186]  G. Sigel,et al.  Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers. , 1991, Applied optics.

[187]  J D Joannopoulos,et al.  Multimaterial piezoelectric fibres. , 2010, Nature materials.

[188]  Leslie Brandon Shaw,et al.  Development and Infrared Applications of Chalcogenide Glass Optical Fibers , 2000 .

[189]  C. Rowlands,et al.  Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates. , 2009, Optics letters.

[190]  A Densmore,et al.  Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. , 2009, Optics letters.

[191]  M. Lipson,et al.  First-principle derivation of gain in high-index-contrast waveguides. , 2008, Optics express.

[192]  S. Sakuragi,et al.  Infrared image guide with bundled As-S glass fibers. , 1985, Applied optics.