Are motorways rational from slime mould's point of view?

We analyse the results of our experimental laboratory approximation of motorway networks with slime mould Physarum polycephalum. Motorway networks of 14 geographical areas are considered: Australia, Africa, Belgium, Brazil, Canada, China, Germany, Iberia, Italy, Malaysia, Mexico, the Netherlands, UK and USA. For each geographical entity, we represented major urban areas by oat flakes and inoculated the slime mould in a capital. After slime mould spanned all urban areas with a network of its protoplasmic tubes, we extracted a generalised Physarum graph from the network and compared the graphs with an abstract motorway graph using most common measures. The measures employed are the number of independent cycles, cohesion, shortest paths lengths, diameter, the Harary index and the Randić index. We obtained a series of intriguing results, and found that the slime mould approximates best of all the motorway graphs of Belgium, Canada and China, and that for all entities studied the best match between Physarum and motorway graphs is detected by the Randić index (molecular branching index).

[1]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[2]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[3]  L B Kier,et al.  Molecular connectivity. I: Relationship to nonspecific local anesthesia. , 1975, Journal of pharmaceutical sciences.

[4]  L B Kier,et al.  Molecular connectivity. II: Relationship to water solubility and boiling point. , 1975, Journal of pharmaceutical sciences.

[5]  M. Randic Characterization of molecular branching , 1975 .

[6]  Melvin Tainiter Statistical theory of connectivity I: basic definitions and properties , 1975, Discret. Math..

[7]  Christopher Taylor,et al.  Roads and tracks of Britain , 1979 .

[8]  M. Protic,et al.  Molecular connectivity: a novel method for prediction of bioconcentration factor of hazardous chemicals. , 1982, Chemico-biological interactions.

[9]  S. Seidman Internal cohesion of ls sets in graphs , 1983 .

[10]  Richard D. Ringeisen,et al.  Cohesion and stability in graphs , 1983, Discret. Math..

[11]  D. Sutherland,et al.  On the road. , 1996, Nursing times.

[12]  N. Trinajstic,et al.  On the Harary index for the characterization of chemical graphs , 1993 .

[13]  S. Stephenson,et al.  Myxomycetes: A Handbook of Slime Molds , 1994 .

[14]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[15]  Radko Mesiar,et al.  Basic definitions and properties , 2000 .

[16]  T. Nakagaki,et al.  Smart behavior of true slime mold in a labyrinth. , 2001, Research in microbiology.

[17]  T. Nakagaki,et al.  Path finding by tube morphogenesis in an amoeboid organism. , 2001, Biophysical chemistry.

[18]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[19]  Ernesto Estrada,et al.  Generalization of topological indices , 2001 .

[20]  Nenad Trinajstić,et al.  Harary Index - Twelve Years Later* , 2002 .

[21]  R. Rousseau,et al.  BRS-compactness in networks: Theoretical considerations related to cohesion in citation graphs, collaboration networks and the internet , 2003 .

[22]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[23]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[24]  Aura Reggiani,et al.  Transport Developments and Innovations in an Evolving World , 2004 .

[25]  John Taplin,et al.  Cost-Benefit Analysis and Evolutionary Computing , 2005 .

[26]  John Taplin,et al.  Cost-Benefit Analysis And Evolutionary Computing: Optimal Scheduling of Interactive Road Projects , 2005 .

[27]  Martin G. Everett,et al.  A Graph-theoretic perspective on centrality , 2006, Soc. Networks.

[28]  J. Urry,et al.  Mobilities, Networks, Geographies , 2006 .

[29]  H Davies From trackways to motorways - 5000 years of highway history , 2006 .

[30]  Pierre Hansen,et al.  Comparing the Zagreb Indices , 2006 .

[31]  Dan Bogart,et al.  Neighbors, networks, and the development of transport systems: Explaining the diffusion of turnpike trusts in eighteenth-century England , 2007 .

[32]  A. Tero,et al.  Minimum-risk path finding by an adaptive amoebal network. , 2007, Physical review letters.

[33]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[34]  Michele Catanzaro,et al.  Dynamical processes in complex networks , 2008 .

[35]  Tat Chee Avenue,et al.  An Updated Survey on the Randic Index , 2008 .

[36]  Tomohiro Shirakawa,et al.  On Simultaneous Construction of Voronoi Diagram and Delaunay Triangulation by Physarum polycephalum , 2009, Int. J. Bifurc. Chaos.

[37]  Stephan Olariu,et al.  Vehicular Networks: From Theory to Practice , 2009 .

[38]  Andrew Adamatzky,et al.  Developing Proximity Graphs by Physarum polycephalum: Does the Plasmodium Follow the Toussaint Hierarchy? , 2009, Parallel Process. Lett..

[39]  Igor Sádaba Mobilities , 2009 .

[40]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[41]  Christine Solnon,et al.  Ant Colony Optimization and Constraint Programming , 2010 .

[42]  Jeff Jones,et al.  Road Planning with Slime Mould: if Physarum Built Motorways IT Would Route M6/M74 through Newcastle , 2009, Int. J. Bifurc. Chaos.

[43]  Gergely Tibély,et al.  Criterions for locally dense subgraphs , 2011, ArXiv.

[44]  Linyuan Lu,et al.  The Randić index and the diameter of graphs , 2011, Discret. Math..

[45]  Zdenek Dvorak,et al.  Randić index and the diameter of a graph , 2011, Eur. J. Comb..

[46]  Genaro Juárez Martínez,et al.  Approximating Mexican highways with slime mould , 2010, Natural Computing.

[47]  Selim G. Akl,et al.  Trans-Canada Slimeways: Slime Mould Imitates the Canadian Transport Network , 2011, Int. J. Nat. Comput. Res..

[48]  Dragan Stevanovi'c,et al.  On comparing Zagreb indices , 2011 .

[49]  Andrew Adamatzky,et al.  Brazilian highways from slime mold's point of view , 2011, Kybernetes.

[50]  Andrew Adamatzky,et al.  Rebuilding Iberian motorways with slime mould , 2011, Biosyst..

[51]  Jeff Jones,et al.  Vie Physarale: Evaluation of Roman roads with slime mould , 2012, ArXiv.

[52]  Bernard De Baets,et al.  Slime Mould Imitation of Belgian Transport Networks: Redundancy, Bio-Essential Motorways, and Dissolution , 2011, Int. J. Unconv. Comput..

[53]  Andrew Adamatzky,et al.  Schlauschleimer in Reichsautobahnen: Slime mould imitates motorway network in Germany , 2012, Kybernetes.

[54]  Andrew Adamatzky,et al.  Slime mould evaluation of Australian motorways , 2012, Int. J. Parallel Emergent Distributed Syst..

[55]  Ibrahim Zuwairie,et al.  Malaysian expressways: is there a logic behind them? , 2012 .

[56]  Andrew Adamatzky,et al.  Biological evaluation of Trans-African highways , 2013 .

[57]  Yuxin Zhao,et al.  Slime mould imitates transport networks in China , 2013, Int. J. Intell. Comput. Cybern..

[58]  Peter M. A. Sloot,et al.  Bio-Development of Motorway Network in the Netherlands: a slime mould Approach , 2013, Adv. Complex Syst..