Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes
暂无分享,去创建一个
Jun-Ming Xu | Xiao-Dong Hu | Min Xu | Junming Xu | Xiaodong Hu | Min Xu
[1] M. H. Schultz,et al. Topological properties of hypercubes , 1988, IEEE Trans. Computers.
[2] Jie Wu,et al. The Balanced Hypercube: A Cube-Based System for Fault-Tolerant Applications , 1997, IEEE Trans. Computers.
[3] Junming Xu. Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.
[4] Kemal Efe. A Variation on the Hypercube with Lower Diameter , 1991, IEEE Trans. Computers.
[5] Anne Germa,et al. Cycles in the cube-connected cycles graph , 1998, Discret. Appl. Math..
[6] Jie Wu,et al. AREA EFFICIENT LAYOUT OF BALANCED HYPERCUBES , 1995 .
[7] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[8] Brian Alspach,et al. Edge-pancyclic block-intersection graphs , 1991, Discret. Math..
[9] Xiaohua Jia,et al. Node-pancyclicity and edge-pancyclicity of crossed cubes , 2005, Inf. Process. Lett..
[10] Arthur M. Hobbs. The square of a block is vertex pancyclic , 1976 .
[11] Jimmy J. M. Tan,et al. Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..
[12] Jianxi Fan. Hamilton-connectivity and cycle-embedding of the Möbius cubes , 2002, Inf. Process. Lett..
[13] Chin-Hsing Chen,et al. Pancyclicity of Mobius cubes , 2002, Ninth International Conference on Parallel and Distributed Systems, 2002. Proceedings..