A Review on Hypothesized Metabolic Pathways on Europa and Enceladus: Space-Flight Detection Considerations

Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon's ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions.

[1]  J. O'Rourke,et al.  Slow evolution of Europa’s interior: metamorphic ocean origin, delayed metallic core formation, and limited seafloor volcanism , 2023, Science advances.

[2]  F. Postberg,et al.  Detection of phosphates originating from Enceladus’s ocean , 2023, Nature.

[3]  Jennifer M. Brown,et al.  On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon conditions , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Kempf,et al.  Mapping the surface composition of Europa with SUDA , 2023, Planetary and Space Science.

[5]  R. Ferrière,et al.  Putative Methanogenic Biosphere in Enceladus's Deep Ocean: Biomass, Productivity, and Implications for Detection , 2022, The Planetary Science Journal.

[6]  F. Postberg,et al.  Toward Detecting Biosignatures of DNA, Lipids, and Metabolic Intermediates from Bacteria in Ice Grains Emitted by Enceladus and Europa. , 2022, Astrobiology.

[7]  M. Hesse,et al.  Surface‐To‐Ocean Exchange by the Sinking of Impact Generated Melt Chambers on Europa , 2022, Geophysical Research Letters.

[8]  D. Blankenship,et al.  Brine Volume Fraction as a Habitability Metric for Europa's Ice Shell , 2022, Geophysical Research Letters.

[9]  C. Mertens,et al.  Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge , 2022, Nature Communications.

[10]  Karthik Anantharaman,et al.  Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits , 2022, bioRxiv.

[11]  D. Catling,et al.  Chemical Fractionation Modeling of Plumes Indicates a Gas-rich, Moderately Alkaline Enceladus Ocean , 2022, The Planetary Science Journal.

[12]  P. Willis,et al.  Detection of Biosignatures by Capillary Electrophoresis Mass Spectrometry in the Presence of Salts Relevant to Ocean Worlds Missions. , 2022, Astrobiology.

[13]  W. Kang Different Ice-shell Geometries on Europa and Enceladus due to Their Different Sizes: Impacts of Ocean Heat Transport , 2022, The Astrophysical Journal.

[14]  M. Hesse,et al.  Downward Oxidant Transport Through Europa's Ice Shell by Density‐Driven Brine Percolation , 2022, Geophysical Research Letters.

[15]  P. Wurz,et al.  Toward Detecting Polycyclic Aromatic Hydrocarbons on Planetary Objects with ORIGIN , 2022, The Planetary Science Journal.

[16]  W. J. Lowe,et al.  Metabolic Strategies Shared by Basement Residents of the Lost City Hydrothermal Field , 2022, bioRxiv.

[17]  C. Sotin,et al.  Theoretical Considerations on the Characteristic Timescales of Hydrogen Generation by Serpentinization Reactions on Enceladus , 2022, Journal of Geophysical Research: Planets.

[18]  Konstantin O. Zamuruyev,et al.  Europan Molecular Indicators of Life Investigation (EMILI) for a Future Europa Lander Mission , 2022, Frontiers in Space Technologies.

[19]  M. Sephton,et al.  Mass Spectrometric Fingerprints of Bacteria and Archaea for Life Detection on Icy Moons. , 2022, Astrobiology.

[20]  M. Lo,et al.  Science Goals and Mission Architecture of the Europa Lander Mission Concept , 2022, The Planetary Science Journal.

[21]  L. Barge,et al.  Determining the "Biosignature Threshold" for Life Detection on Biotic, Abiotic, or Prebiotic Worlds. , 2021, Astrobiology.

[22]  J. L. Parra,et al.  Enceladus as a Potential Niche for Methanogens and Estimation of Its Biomass , 2021, Life.

[23]  C. Cockell,et al.  Instantaneous Habitable Windows in the Parameter Space of Enceladus' Ocean , 2021, Journal of Geophysical Research: Planets.

[24]  Benjamin M. Butler,et al.  Laboratory exploration of mineral precipitates from Europa’s subsurface ocean , 2021, Journal of applied crystallography.

[25]  N. Renno,et al.  Complex Brines and Their Implications for Habitability , 2021, Life.

[26]  A. McEwen,et al.  The Science Case for a Return to Enceladus , 2021, The Planetary Science Journal.

[27]  D. Blankenship,et al.  Ice Shell Structure and Composition of Ocean Worlds: Insights from Accreted Ice on Earth. , 2021, Astrobiology.

[28]  A. Knížek,et al.  Abiotic Formation of Methane and Prebiotic Molecules on Mars and Other Planets , 2021 .

[29]  G. Tobie,et al.  Short lifespans of serpentinization in the rocky core of Enceladus: Implications for hydrogen production , 2021, Icarus.

[30]  F. Postberg,et al.  The Enceladus Orbilander Mission Concept: Balancing Return and Resources in the Search for Life , 2021, The Planetary Science Journal.

[31]  Y. Sekine,et al.  The role of hydrothermal sulfate reduction in the sulfur cycles within Europa: Laboratory experiments on sulfate reduction at 100 MPa , 2021 .

[32]  F. Postberg,et al.  Oxidation processes diversify the metabolic menu on Enceladus , 2020, 2012.08582.

[33]  D. Blankenship,et al.  Brine Migration and Impact‐Induced Cryovolcanism on Europa , 2020, Geophysical Research Letters.

[34]  J. Spitale,et al.  The formation of Enceladus' Tiger Stripe Fractures from eccentricity tides , 2020 .

[35]  C. Glein,et al.  A Metamorphic Origin for Europa's Ocean , 2020, Geophysical research letters.

[36]  S. Howell The Likely Thickness of Europa’s Icy Shell , 2020, The Planetary Science Journal.

[37]  E. Tziperman,et al.  Dynamic Europa ocean shows transient Taylor columns and convection driven by ice melting and salinity , 2020, Nature Communications.

[38]  F. Postberg,et al.  Discriminating Abiotic and Biotic Fingerprints of Amino Acids and Fatty Acids in Ice Grains Relevant to Ocean Worlds. , 2020, Astrobiology.

[39]  S. Ruff,et al.  Stromatolitic digitate sinters form under wide‐ranging physicochemical conditions with diverse hot spring microbial communities , 2020, Geobiology.

[40]  R. Pappalardo,et al.  NASA’s Europa Clipper—a mission to a potentially habitable ocean world , 2020, Nature Communications.

[41]  G. Choblet,et al.  Tidally Heated Convection and the Occurrence of Melting in Icy Satellites: Application to Europa , 2020, Journal of Geophysical Research: Planets.

[42]  C. Glein,et al.  The Carbonate Geochemistry of Enceladus' Ocean , 2020, Geophysical Research Letters.

[43]  M. Hedman,et al.  Characterizing deposits emplaced by cryovolcanic plumes on Europa , 2020, Icarus.

[44]  R. Taubner,et al.  Microbial Diversity and Biosignatures: An Icy Moons Perspective , 2020, Space Science Reviews.

[45]  W. Brazelton,et al.  Habitability of the marine serpentinite subsurface: a case study of the Lost City hydrothermal field , 2020, Philosophical Transactions of the Royal Society A.

[46]  F. Postberg,et al.  Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains , 2019, Monthly Notices of the Royal Astronomical Society.

[47]  Michael E. Brown,et al.  Sodium chloride on the surface of Europa , 2019, Science Advances.

[48]  K. Hand,et al.  Follow the Oxygen: Comparative Histories of Planetary Oxygenation and Opportunities for Aerobic Life. , 2019, Astrobiology.

[49]  R. Pappalardo,et al.  Can Earth-like plate tectonics occur in ocean world ice shells? , 2019, Icarus.

[50]  E. Shock,et al.  The Europa Clipper MASPEX Europa Investigation , 2019 .

[51]  Nancy Merino,et al.  Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context , 2019, Front. Microbiol..

[52]  Sona Hosseini,et al.  The NASA Roadmap to Ocean Worlds , 2018, Astrobiology.

[53]  K. Nealson,et al.  Genomic and in-situ Transcriptomic Characterization of the Candidate Phylum NPL-UPL2 From Highly Alkaline Highly Reducing Serpentinized Groundwater , 2018, Front. Microbiol..

[54]  C. Schleper,et al.  Simulating putative Enceladus-like conditions: The possibility of biological methane production on Saturn’s icy moon , 2018, Proceedings of the International Astronomical Union.

[55]  X. Morgan,et al.  Microbial biogeography of 925 geothermal springs in New Zealand , 2018, Nature Communications.

[56]  Mary A. Voytek,et al.  The Ladder of Life Detection , 2018, Astrobiology.

[57]  F. Postberg,et al.  Macromolecular organic compounds from the depths of Enceladus , 2018, Nature.

[58]  C. Schleper,et al.  Biological methane production under putative Enceladus-like conditions , 2018, Nature Communications.

[59]  W. Brazelton,et al.  Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field , 2018, Scientific Reports.

[60]  Douglas Galante,et al.  Microbial habitability of Europa sustained by radioactive sources , 2018, Scientific Reports.

[61]  K. Hand,et al.  The Possible Emergence of Life and Differentiation of a Shallow Biosphere on Irradiated Icy Worlds: The Example of Europa , 2017, Astrobiology.

[62]  C. Plainaki,et al.  Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies , 2017 .

[63]  Gabriel Tobie,et al.  Powering prolonged hydrothermal activity inside Enceladus , 2017 .

[64]  C. Porco,et al.  Could It Be Snowing Microbes on Enceladus? Assessing Conditions in Its Plume and Implications for Future Missions , 2017, Astrobiology.

[65]  L. White,et al.  Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. , 2017, Astrobiology.

[66]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[67]  Susana E. Deustua,et al.  Active Cryovolcanism on Europa? , 2017, 1704.04283.

[68]  A. McMinn,et al.  Sea ice, extremophiles and life on extra-terrestrial ocean worlds , 2017, International Journal of Astrobiology.

[69]  A. Rivoldini,et al.  Enceladus's and Dione's floating ice shells supported by minimum stress isostasy , 2016, 1610.00548.

[70]  Gabriel Tobie,et al.  Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data , 2016 .

[71]  K. Hand,et al.  Geophysical controls of chemical disequilibria in Europa , 2016 .

[72]  F. Poulet,et al.  VLT/SINFONI OBSERVATIONS OF EUROPA: NEW INSIGHTS INTO THE SURFACE COMPOSITION , 2016 .

[73]  E. Quataert,et al.  Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems , 2016, 1601.05804.

[74]  C. Schleper,et al.  Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies , 2015, Life.

[75]  F. Postberg,et al.  High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus , 2015, Nature Communications.

[76]  Michael E. Brown,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS , 2015, 1510.07372.

[77]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[78]  B. Marsh,et al.  Constraining the thickness of Europa’s water–ice shell: Insights from tidal dissipation and conductive cooling , 2015 .

[79]  K. Hand,et al.  Europa's surface color suggests an ocean rich with sodium chloride , 2015 .

[80]  W. McKinnon Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity , 2015 .

[81]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[82]  J. Baross,et al.  The pH of Enceladus’ ocean , 2015, 1502.01946.

[83]  L. Prockter,et al.  Evidence for subduction in the ice shell of Europa , 2014 .

[84]  Carolyn C. Porco,et al.  HOW THE GEYSERS, TIDAL STRESSES, AND THERMAL EMISSION ACROSS THE SOUTH POLAR TERRAIN OF ENCELADUS ARE RELATED , 2014 .

[85]  Robert T. Pappalardo,et al.  Europa Clipper Mission Concept: Exploring Jupiter's Ocean Moon , 2014 .

[86]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[87]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[88]  D. Prialnik,et al.  Modeling serpentinization: Applied to the early evolution of Enceladus and Mimas , 2013 .

[89]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[90]  M. E. Brown,et al.  SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA , 2013, 1303.0894.

[91]  G. Schubert,et al.  Keeping Enceladus warm , 2012 .

[92]  G. Schubert,et al.  A whole-moon thermal history model of Europa: Impact of hydrothermal circulation and salt transport , 2012 .

[93]  Richard Greenberg,et al.  Acidification of Europa's subsurface ocean as a consequence of oxidant delivery. , 2012, Astrobiology.

[94]  G. W. Patterson,et al.  Active formation of ‘chaos terrain’ over shallow subsurface water on Europa , 2011, Nature.

[95]  Thomas M. McCollom,et al.  Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types , 2011 .

[96]  J. Baross,et al.  Physiological Differentiation within a Single-Species Biofilm Fueled by Serpentinization , 2011, mBio.

[97]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[98]  W. S. Lewis,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[99]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[100]  A. Boetius,et al.  Thriving in Salt , 2009, Science.

[101]  Yahai Lu,et al.  Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave , 2009, The ISME Journal.

[102]  C. McKay,et al.  The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. , 2008, Astrobiology.

[103]  W. Martin,et al.  Hydrothermal vents and the origin of life , 2008, Nature Reviews Microbiology.

[104]  W. Whitman,et al.  Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea , 2008, Annals of the New York Academy of Sciences.

[105]  Christopher F Chyba,et al.  Energy, chemical disequilibrium, and geological constraints on Europa. , 2007, Astrobiology.

[106]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[107]  M. Zolotov An oceanic composition on early and today's Enceladus , 2007 .

[108]  V. Orphan,et al.  Methyl sulfides as intermediates in the anaerobic oxidation of methane. , 2007, Environmental microbiology.

[109]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[110]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[111]  Michael T. Madigan,et al.  Biodiversity of Methanogenic and Other Archaea in the Permanently Frozen Lake Fryxell, Antarctica , 2006, Applied and Environmental Microbiology.

[112]  Thomas M. Orlando,et al.  The chemical nature of Europa surface material and the relation to a subsurface ocean , 2005 .

[113]  S. Kattenhorn,et al.  The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges , 2005 .

[114]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[116]  J. E. Richards,et al.  The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation , 2004 .

[117]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[118]  J. Baross,et al.  Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. , 2004, Environmental microbiology.

[119]  E. Igenbergs,et al.  The Cassini Cosmic Dust Analyzer , 2004 .

[120]  Everett L. Shock,et al.  A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa , 2004 .

[121]  Everett L. Shock,et al.  Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa , 2003 .

[122]  R. Pappalardo,et al.  Estimates of Europa's ice shell thickness from elastically‐supported topography , 2003 .

[123]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[124]  R. Carlson,et al.  Sulfuric Acid Production on Europa: The Radiolysis of Sulfur in Water Ice , 2002 .

[125]  Elisabetta Pierazzo,et al.  Cometary Delivery of Biogenic Elements to Europa , 2002 .

[126]  R. Sullivan,et al.  Morphology of Europan bands at high resolution: A mid‐ocean ridge‐type rift mechanism , 2002 .

[127]  Richard B. Hoover,et al.  Anaerobic psychrophiles from Alaska, Antarctica, and Patagonia: implications to possible life on Mars and Europa , 2002, SPIE Optics + Photonics.

[128]  E. Shock,et al.  Composition and stability of salts on the surface of Europa and their oceanic origin , 2001 .

[129]  F. Fanale,et al.  An experimental estimate of Europa's “ocean” composition independent of Galileo orbital remote sensing , 2001 .

[130]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[131]  G. Marion Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO , 2001 .

[132]  Michael E. Brown,et al.  Potassium in Europa's Atmosphere , 2001 .

[133]  C. Chyba,et al.  Possible ecosystems and the search for life on Europa. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[134]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[135]  David J. Stevenson,et al.  Europa's Ocean--the Case Strengthens , 2000, Science.

[136]  C. Chyba,et al.  Energy for microbial life on Europa , 2000, Nature.

[137]  Thomas M. McCollom,et al.  Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa , 1999 .

[138]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[139]  Stanley L. Miller,et al.  On the Origin of Metabolic Pathways , 1999, Journal of Molecular Evolution.

[140]  J. Kirschvink,et al.  Life in Ice-Covered Oceans , 1999, Science.

[141]  James Charles Granahan,et al.  Hydrated salt minerals on Europa's surface from the Galileo near‐infrared mapping spectrometer (NIMS) investigation , 1999 .

[142]  R E Johnson,et al.  Hydrogen peroxide on the surface of Europa. , 1999, Science.

[143]  A. Lane,et al.  Europa: Disk-Resolved Ultraviolet Measurements Using the Galileo Ultraviolet Spectrometer , 1998 .

[144]  J. K. Crowley,et al.  Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. , 1998, Science.

[145]  R. Sullivan,et al.  Evidence for Separation across a Gray Band on Europa , 1996 .

[146]  Hans-Peter Klenk,et al.  Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., Two Species of Hyperacidophilic, Thermophilic, Heterotrophic, Aerobic Archaea , 1996 .

[147]  R. Hill,et al.  Discovery of an extended sodium atmosphere around Europa , 1996, Nature.

[148]  Keith S. Noll,et al.  The albedo spectrum of Europa from 2200 Å to 3300 Å , 1995 .

[149]  W. McDonough,et al.  The composition of the Earth , 1995 .

[150]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[151]  Jeffrey S. Kargel,et al.  Brine volcanism and the interior structures of asteroids and icy satellites , 1991 .

[152]  John A. Baross,et al.  Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life , 1985, Origins of life and evolution of the biosphere.

[153]  Christopher P. McKay,et al.  On the habitability of Europa , 1983 .

[154]  H. Prichard A petrographie study of the process of serpentinisation in ophiolites and the ocean crust , 1979 .

[155]  H. White Coenzymes as fossils of an earlier metabolic state , 1976, Journal of Molecular Evolution.

[156]  JOHN S. Lewis Satellites of the Outer Planets: Their Physical and Chemical Nature , 1971 .

[157]  C. German,et al.  HOT VENTS BENEATH AN ICY OCEAN THE AURORA VENT FIELD, GAKKEL RIDGE, REVEALED , 2022 .

[158]  A. Butterworth,et al.  On the Feasibility of Informative Biosignature Measurements Using an Enceladus Plume Organic Analyzer , 2021 .

[159]  G. Etiope Abiotic Methane in Continental Serpentinization Sites: An Overview ☆ , 2017 .

[160]  F. Nimmo,et al.  The thermal and orbital evolution of Enceladus : observational constraints and models , 2017 .

[161]  H. Eicken,et al.  The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. , 2003, Astrobiology.

[162]  T. McCord,et al.  Brines exposed to Europa surface conditions , 2002 .

[163]  Stephan Kempe,et al.  Biogenesis and early life on Earth and Europa: favored by an alkaline ocean? , 2002, Astrobiology.

[164]  L. Irwin,et al.  Energy cycling and hypothetical organisms in Europa's ocean. , 2002, Astrobiology.

[165]  R. A. Jacobson,et al.  Europa's differentiated internal structure: inferences from four Galileo encounters. , 1997, Science.

[166]  N. Holm Why are Hydrothermal Systems Proposed as Plausible Environments for the Origin of Life , 1992 .