Upper Bound Strategy in Optimum Design of Truss Structures: A Big Bang-Big Crunch Algorithm Based Application

One main shortcoming of metaheuristic search techniques in structural optimization is the large number of time-consuming structural analyses required for convergence to a reasonable solution. This study is an attempt to apply the so-called upper bound strategy (UBS) as a simple, yet an efficient strategy to reduce the total number of structural analyses through avoiding unnecessary analyses during the course of optimization. Although, the usefulness of the UBS is demonstrated in conjunction with a big bang-big crunch algorithm developed for optimum design of truss structures, it can be integrated with any other metaheuristic technique which works on the basis of (μ+Λ) evolutionary model. The numerical investigations over three benchmark truss optimization instances reveal that the UBS can reduce the total number of required structural analyses of the standard BB-BC algorithm to a great extent.

[1]  M. H. Afshar,et al.  CONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM , 2011 .

[2]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[3]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[4]  O. Hasançebi,et al.  Upper bound strategy for metaheuristic based design optimization of steel frames , 2013, Adv. Eng. Softw..

[5]  Songtao Xue,et al.  Big Bang-Big Crunch optimization for parameter estimation in structural systems , 2010 .

[6]  Chee Kiong Soh,et al.  Fuzzy Controlled Genetic Algorithm Search for Shape Optimization , 1996 .

[7]  Ali Kaveh,et al.  Genetic algorithm for discrete‐sizing optimal design of trusses using the force method , 2002 .

[8]  Charles V. Camp DESIGN OF SPACE TRUSSES USING BIG BANG–BIG CRUNCH OPTIMIZATION , 2007 .

[9]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[10]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[11]  Mehmet Polat Saka,et al.  Optimum design of steel frames with stability constraints , 1991 .

[12]  Fuat Erbatur,et al.  Optimum design of frames , 1992 .

[13]  Siamak Talatahari,et al.  Optimal design of Schwedler and ribbed domes via hybrid Big Bang–Big Crunch algorithm , 2010 .

[14]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[15]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[16]  Saeid Kazemzadeh Azad,et al.  Structural optimization using artificial bee colony algorithm , 2010 .

[17]  Enrique I. Tabak,et al.  Optimality Criteria Method for Building Frames , 1981 .

[18]  S. Kazemzadeh Azad,et al.  OPTIMUM DESIGN OF STRUCTURES USINGAN IMPROVED FIREFLYALGORITHM , 2011 .

[19]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .

[20]  A. Kaveh,et al.  A DISCRETE BIG BANG - BIG CRUNCH ALGORITHM FOR OPTIMAL DESIGN OF SKELETAL STRUCTURES , 2010 .

[21]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[22]  A. Kaveh,et al.  Size optimization of space trusses using Big Bang-Big Crunch algorithm , 2009 .

[23]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[24]  A Kaveh,et al.  OPTIMUM DESIGN OF STEEL SWAY FRAMES USING BIG BANGBIG CRUNCH ALGORITHM , 2011 .

[25]  Loo Hay Lee,et al.  An adaptive real-coded genetic algorithm , 2002, Appl. Artif. Intell..

[26]  Osman Kaan Erol,et al.  EVALUATING EFFICIENCY OF BIG-BANG BIG-CRUNCH ALGORITHM IN BENCHMARK ENGINEERING OPTIMIZATION PROBLEMS , 2011 .

[27]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[28]  Ozgur Kurc,et al.  Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm , 2011 .

[29]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.